
Lifting Freehand Concept Sketches into 3D
Implementation details

YULIA GRYADITSKAYA, Université Côte d’Azur, Inria, University of Surrey, CVSSP
FELIX HÄHNLEIN, Université Côte d’Azur, Inria
CHENXI LIU, University of British Columbia
ALLA SHEFFER, University of British Columbia
ADRIEN BOUSSEAU, Université Côte d’Azur, Inria
CCS Concepts: • Computing methodologies → Modeling methodolo-
gies; Shapemodeling;Non-photorealistic rendering; •Applied computing
→ Computer-aided design.

Additional Key Words and Phrases: product design, sketching, line drawing,
sketch-based modeling, 3D reconstruction

ACM Reference Format:
Yulia Gryaditskaya, Felix Hähnlein, Chenxi Liu, Alla Sheffer, and Adrien
Bousseau. 2020. Lifting Freehand Concept Sketches into 3D Implementation
details . ACM Trans. Graph. 39, 6, Article 1 (December 2020), 3 pages. https:
//doi.org/10.1145/3414685.3417851

1 2D ANALYSIS

1.1 Straight line detection.

Straight strokes

Curved strokes

Sketch

Our method reconstructs straight scaf-
fold lines as a preliminary step for re-
constructing surface curves. We distin-
guish straight from curved strokes by
performing a PCA analysis on the point
samples that compose each stroke, and
consider that a stroke is curved if the ra-
tio between the second and first eigen
values is above a threshold, set to 0.001
in our implementation. While some of
the straight strokes correspond to sur-
face features rather than to construction
lines, this distinction is not relevant for
our algorithm, which reconstructs polyhedral shapes no matter their
semantic meaning. Finally, we classify curved strokes as ellipses if
they form closed regions.

1.2 Vanishing point detection
Ourmethod targets design drawings of man-made objects, for which
scaffolds are dominated by three sets of orthogonal lines aligned
with the coordinate axes. We identify these three sets by running the

Authors’ addresses: Yulia Gryaditskaya, Université Côte d’Azur, Inria, University of
Surrey, CVSSP, yulia.gryaditskaya@gmail.com; Felix Hähnlein, Université Côte d’Azur,
Inria; Chenxi Liu, University of British Columbia; Alla Sheffer, University of British
Columbia; Adrien Bousseau, Université Côte d’Azur, Inria.

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of a national govern-
ment. As such, the Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government purposes only.
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2020/12-ART1 $15.00
https://doi.org/10.1145/3414685.3417851

vanishing point detection algorithm of Rother [2002], which consid-
ers multiple candidate vanishing points as triplets of points to which
most lines converge. We use the variant of Hedau et al. [2009] to
compute the probability that a stroke converges towards a vanishing
point.

For each triplet of candidate vanishing points the principal point,
and focal length are estimated. The triplet that satisfies constraints
on orthogonality, principal point, and focal length is then selected.
We use the constraints suggested by Rother [2002], except that
we converted the constraint on focal length 𝑓 to a constraint on
field-of-view. We impose that the field-of-view lies in the interval
[10◦, 120◦].

1.3 Camera calibration
In addition to providing a strong prior on mutual orthogonality
between strokes, the detected vanishing points allow us to calibrate a
perspective camera [Guillou et al. 2000; Orghidan et al. 2012], which
gives us the 3D direction of the axes associated to these vanishing
points. Estimating a perspective projection matrix requires first to
find the principal point.

Principal point computation. Since the principal point computa-
tion is a key element of computing a camera projection matrix, we
summarize below three possible configurations of vanishing points
[Rother 2002], which affect the computation of a principal point. If
there are three finite vanishing points, the principal point is the or-
thocenter of the triangle formed by these points [Cipolla et al. 1999].
In case of two finite vanishing points, the principal point lies on the
line connecting two finite vanishing points. Since in sketches the
principal point can be located arbitrarily with respect to the image
area [Gryaditskaya et al. 2019], we select the principal point that
lies on the line connecting two finite vanishing points and which
minimizes the distance to a third vanishing point. We found this
more robust for sketches than minimizing the distance to the image
plane center. In case of one finite vanishing point, the projection is
near orthogonal and the principal point coincides with the finite
vanishing point. In this case, it is impossible to estimate the focal
length value and an orthogonal projection should be used instead.
The focal length is estimated from a given triplet of vanishing points
and a principal point [Guillou et al. 2000].

Projection matrix. Principal point, focal length and a triplet of
vanishing points define the projection matrix uniquely up to a scale
and a translation. For our application, scale and scene origin can
be chosen arbitrarily. We assign the up vector of the 3D object

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

https://doi.org/10.1145/3414685.3417851
https://doi.org/10.1145/3414685.3417851
https://doi.org/10.1145/3414685.3417851

1:2 • Y. Gryaditskaya, et al.

coordinate system to the vanishing point with the highest absolute
vertical coordinate. The camera translation vector is then computed
as done by Orghidan et al. [2012].

1.4 Intersection detection and grouping

Strokes accuracy neigborhoods

We pre-compute all intersections be-
tween strokes. Because our input draw-
ings are drawn freehand, strokes some-
times stop before their intended end,
leaving small gaps between lines that
should intersect. We observed that the
degree of inaccuracy often varies over
the drawing, as fine details are drawn
with more care than rough structures.
We account for such variation by expressing the neighborhood size
of a stroke 𝑟𝑠𝑡𝑟𝑜𝑘𝑒 as a function of the speed 𝑣𝑠𝑡𝑟𝑜𝑘𝑒 at which the
stroke has been drawn:

𝑟𝑠𝑡𝑟𝑜𝑘𝑒 = 𝜏min + (𝜏max − 𝜏min)
(𝑣max − 𝑣min)

𝑣𝑠𝑡𝑟𝑜𝑘𝑒 , (1)

where 𝜏min = 2�̄�𝑠𝑡𝑟𝑜𝑘𝑒𝑠 , 𝜏max = 6.5�̄�𝑠𝑡𝑟𝑜𝑘𝑒𝑠 are two thresholds,
whose values are derived based on themaximumwidth of the strokes
�̄�𝑠𝑡𝑟𝑜𝑘𝑒𝑠 in the current sketch, and 𝑣min, 𝑣max are the minimum and
the maximum speed of the strokes over all the sketches in the
OpenSketch dataset [Gryaditskaya et al. 2019]. We detect additional
intersections by extending each straight stroke by the size of its
neighborhood.
Another characteristic of freehand design drawings is that mul-

tiple coincident lines often do not intersect exactly at the same
point, but rather result in a multitude of nearby intersections. We
deal with this uncertainty by grouping nearby intersections, such
that any lines incident with the group are considered to intersect.
However, we found hard clustering algorithms difficult to apply to
this problem, because groups of intersections often overlap in noisy

Intersections pair
grouping

drawings. Instead, we adopt a soft clustering
strategy where for each intersection, we pair it
with all other intersections along the two inter-
secting strokes if the intersections in the pair
are encompassed by neighborhood of any of the
intersections in this pair. We select the neighbor-
hood size of an intersection between two strokes

as the neighborhood size of the stroke that was drawn last. The
motivation is that the accuracy of the intersection is defined by the
accuracy of the last drawn stroke: let’s say if the newly added detail
stroke intersects some rough scaffold, the accuracy of the intersec-
tion should match the accuracy of the detail stroke. An intersection
is then considered to belong to the group of another one if any of
the two falls within the neighborhood of the other.

1.5 Stroke aggregation
Designers often employ many overdrawn strokes to achieve the
line or curve they envision, which greatly increases the complexity
of our sketches. We reduce this complexity by aggregating nearby
strokes based on their spatial and angular proximity. For straight
strokes, we consider that two strokes are in the same cluster if any

of the two falls within the neighborhood of the other one for more
than 75% of its length, and if they form an angle smaller than 5◦.

Before
aggregation

After
aggregation

In addition, we also require that these
strokes are drawn in sequence, i.e., less
than five strokes apart.We then fit a sin-
gle line segment per cluster, and keep
the time stamp of the earliest stroke
as the time stamp of the cluster. These
clustering parameters are intentionally
conservative as we prefer to keep a
few spurious overdrawn strokes rather
than to merge strokes that should not
be merged, for instance because they
might represent different parts of the
scaffold. For curved strokes, we per-
form a more aggressive clustering us-
ing the first steps of StrokeAggregator

[Liu et al. 2018] (conservative setting of their public binary).

1.6 Intersection filtering
The scaffolds we are interested in, represent 3D polyhedra, whose
corners have three or more coincident lines. In contrast, accidental
occlusions most often occur between two isolated lines. We deduced
from this observation a simple heuristic to filter out many of the
accidental occlusions between scaffold lines.

Intersection valency 4
Paired intersections

For each group of intersections, we
measure the orientation of all incident
straight strokes and mark the intersec-
tions with three or more different orien-
tations as likely intersections, resulting
in a set of intersections I∗: We consider
that two orientations differ if they form
an angle of more than 5◦ for straight
strokes and 35◦ for curved strokes. We

then for each stroke 𝑠 𝑗 check that there is at least one intersection
𝑖 , marked as likely (𝑖 ⊂ I∗), within 25% of the interval between the
two most extreme intersections at this stroke from the respective
extreme endpoints. If there are no such intersections we mark all
the intersections, within the considered intervals, with the strokes
that have non-coinciding directions as likely I∗𝑠 𝑗 . We process each
stroke independently, so that the newly added sets of intersections
do not influence the selection of additional intersections for the
remaining strokes. Thus the total set of intersections which we keep

is I∗ ∪
(
𝑁⋃
𝑖=1
I∗𝑠 𝑗

)
, where N is the total number of strokes in the sketch.

This allows us to reduce the problem dimensionality from several
thousands to a few hundred unknowns, on average.

2 CANDIDATES LINES FOR STRAIGHT STROKES
Let us first consider the general case where we have successfully
reconstructed all strokes until the current one. The new stroke
produces𝑁 intersectionswith the reconstructed strokes, fromwhich
we generate the 𝑁 (𝑁−1)

2 candidate 3D lines passing through all
possible pairs of intersections. In the case of an axis-aligned stroke,

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

Lifting Freehand Concept Sketches into 3D
Implementation details • 1:3

we also create 𝑁 additional candidates, each going through one of
the intersections and parallel to the associated coordinate axis.

2D 3D Candidate
lines

Merged
line

In practice, the above procedure pro-
duces many similar candidates when
multiple pairs of intersections align in
3D. We merge these redundant lines by
averaging their end points. We detect
candidates lines that are nearly identical

by testing if they run near the same intersections. We consider that
a 3D intersection is near a line if its distance to the line is less than
10% of the length of that line. We measure this distance both in 3D
space and along the viewing ray going through the intersection.
In the presence of an ambiguous stroke, we generate candidate

lines by considering all consistent combinations of versions of pre-
ceding strokes on which it depends. If we count the total number
of candidate lines, formed by each pair of intersections, then we
need to construct the pairs formed by the intersections with as-
signed strokes, the pairs formed by the intersections with assigned
strokes and each version of each stroke with multiple candidates,
and, finally, all the pairs between each version of each stroke with

multiple candidates, resulting in the following total number of can-
didate lines:

𝑁𝑐𝑙 =
𝐾 (𝐾 − 1)

2
+

𝐿∑
𝑗=1

𝐾𝑀𝑗 +
𝐿∑
𝑗=1

𝑀𝑗
©«

𝐿∑
𝑖=1,𝑖≠𝑗

𝑀𝑖
ª®¬ , (2)

where 𝐾 is the number of intersecting assigned strokes, 𝐿 is the
number of intersecting strokes with multiple candidates, 𝑀𝑗 is the
number of candidates for the 𝑗𝑡ℎ ∈ [1, 𝐿] stroke.

REFERENCES
Roberto Cipolla, Tom Drummond, and Duncan P Robertson. 1999. Camera Calibration

from Vanishing Points in Image of Architectural Scenes.. In BMVC.
Yulia Gryaditskaya, Mark Sypesteyn, Jan Willem Hoftijzer, Sylvia Pont, Fredo Durand,

and Adrien Bousseau. 2019. OpenSketch: A Richly-Annotated Dataset of Product
Design Sketches. ACM Transactions on Graphics (Proc. SIGGRAPH Asia) (2019).

Erwan Guillou, Daniel Meneveaux, Eric Maisel, and Kadi Bouatouch. 2000. Using
vanishing points for camera calibration and coarse 3D reconstruction from a single
image. The Visual Computer 16, 7 (2000).

Varsha Hedau, Derek Hoiem, and David Forsyth. 2009. Recovering the spatial layout of
cluttered rooms. In Proc. ICCV. IEEE.

Chenxi Liu, Enrique Rosales, and Alla Sheffer. 2018. StrokeAggregator: consolidating
raw sketches into artist-intended curve drawings. ACM Transactions on Graphics
(TOG) 37, 4 (2018), 97.

Radu Orghidan, Joaquim Salvi, Mihaela Gordan, and Bogdan Orza. 2012. Camera
calibration using two or three vanishing points. In FedCSIS.

Carsten Rother. 2002. A new approach to vanishing point detection in architectural
environments. Image and Vision Computing 20, 9-10 (2002).

ACM Trans. Graph., Vol. 39, No. 6, Article 1. Publication date: December 2020.

	1 2D Analysis
	1.1 Straight line detection.
	1.2 Vanishing point detection
	1.3 Camera calibration
	1.4 Intersection detection and grouping
	1.5 Stroke aggregation
	1.6 Intersection filtering

	2 Candidates lines for straight strokes
	References

