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We first describe how we detect and reconstruct individual symme-
try correspondences (Sec. 1). We then provide detailed equations
of our integer program (Sec. 2), and a discussion of computation
time for the main stages of the method (Sec. 3). Finally, we provide
a gallery of reconstructions obtained with our method at the end
of this document. We encourage readers to view our results and
comparisons with animated viewpoint changes on our supplemental
webpage.

1 GENERATING SYMMETRY CANDIDATES
We describe howwe identify candidate pairs of symmetric strokes in
the input sketch, and how we lift each pair to 3D given a symmetry
plane and a calibrated camera.

1.1 Detecting 2D Symmetry Correspondences

Vanishing 
point

Π

The inset illustrates the geometry of reflec-
tive symmetry in a perspective drawing.
Given a symmetry plane Π that is axis-
aligned, two strokes 𝑠𝑝 and 𝑠𝑞 that are sym-
metric with respect to Π lie in the same
triangle formed by joining the endpoints
of the strokes to the vanishing point cor-
responding to the axis perpendicular to Π (blue polygon in inset).
We leverage this property to only consider that one stroke can be
symmetric to another if the triangles they form with the vanishing
point significantly overlap. In practice, we adopt a tolerance of 70%
of overlap to account for sketching inaccuracy. We complement this
criteria with additional heuristics to further reduce the set of candi-
dates for straight strokes, curved strokes, and ellipses, as described
next. Furthermore, we create a correspondence between each stroke
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and itself, which is necessary to reconstruct strokes that lie in the
symmetry plane, or that is self-symmetric with respect to the plane.

Straight Strokes. Design drawings are often constructed using
axis-aligned straight strokes [Gryaditskaya et al. 2020]. We leverage
this observation to restrict the search of symmetry correspondences
to pairs of straight strokes that converge to the same vanishing
point, or to none.

Curved Strokes. Due to foreshortening, a pair of symmetric 3D
curves can produce very different 2D curves under perspective pro-
jection. Considering all possible pairs, however, would overwhelm
the integer program with many erroneous correspondences. We
distill a set of plausible correspondences by only considering pairs of
curved strokes that match well after transforming one of the strokes
with a 2D translation, scaling, and reflection along the vanishing
direction corresponding to the axis perpendicular to the symmetry
plane. We keep such pairs if their Chamfer distance is below 5% of
the length of the longer stroke.

Ellipses. We assume that ellipses represent 3D circles under per-
spective projection. When this is the case, designers align the minor
axis of the ellipse with the vanishing point corresponding to the
axis perpendicular to the 3D circle [Eissen and Steur 2011]. Fol-
lowing this observation, we only form candidate correspondences
for ellipse pairs whose minor axes are aligned (up to 15◦), as these
typically depict cross-sections of the same cylinder.

1.2 Lifting Symmetry Pairs to 3D
Straight Strokes. Given the perspective camera, a symmetry plane

Π, and two strokes 𝑠𝑝 and 𝑠𝑞 positioned in the image plane, we
first build two planes Π𝑝 and Π𝑞 , each going through its respective
strokes and through the camera. We then construct the plane Π′

𝑞

that is symmetric of Π𝑞 with respect to Π. Intersecting Π𝑝 and Π′
𝑞

gives us an infinite 3D line 𝐿𝑝𝑞 , on which we project 𝑠𝑝 to obtain
its 3D reconstruction 𝑆𝑝𝑞 . Finally, we reflect 𝐿𝑝𝑞 with respect to the
symmetry plane to obtain 𝐿𝑞𝑝 , on which we project 𝑠𝑞 to obtain
𝑆𝑞𝑝 .

Curved Strokes. Reconstructing curved strokes is more involved
because such strokes often only correspond partially to other strokes.
We therefore first reconstruct each part that is in correspondence
with another stroke, and then stitch together multiple parts. The
multiple combinations of parts yield several candidate reconstruc-
tions of the entire stroke.
We represent the 3D geometry 𝑆𝑝𝑞 of a curved stroke 𝑠𝑝 as a

cubic Bézier curve and further equip 𝑆𝑝𝑞 with an interval [𝑎𝑝𝑞, 𝑏𝑝𝑞]
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that bounds the part of the stroke that is in correspondence with
the other stroke 𝑠𝑞 , where 𝑎𝑝𝑞 and 𝑏𝑝𝑞 are arc-length parameters.
Given the perspective camera and a symmetry plane Π, we iden-
tify and reconstruct corresponding parts of a stroke pair (𝑆𝑝𝑞, 𝑆𝑞𝑝 )
by solving an optimization problem, where the variables are the
depth of the Bézier control points along their camera rays and the
boundaries of the intervals [𝑎𝑝𝑞, 𝑏𝑝𝑞] and [𝑎𝑞𝑝 , 𝑏𝑞𝑝 ], such that the
two curves are most symmetric in 3D and share the largest interval.
Formally, we minimize an energy of the form:

𝐸curve = 𝜆𝐸symmetry + (1 − 𝜆)𝐸interval, (1)
where the two terms are weighted by 𝜆, which we set to 0.85 in our
experiments. The first term, 𝐸symmetry, measures the 𝐿2 distance
between one curve and the reflection of the other one with respect
to the symmetry plane, sampled uniformly along their respective
intervals. Denoting by 𝑆 ′𝑝𝑞 the reflection of 𝑆𝑝𝑞 with respect to Π:

𝐸symmetry = 1 − exp
(
−∥𝑆 ′𝑝𝑞 [𝑎𝑝𝑞, 𝑏𝑝𝑞] − 𝑆𝑞𝑝 [𝑎𝑞𝑝 , 𝑏𝑞𝑝 ] ∥

)
, (2)

where the exponentiation normalizes the distance to [0, 1]. The
second term penalizes short intervals:
𝐸interval = 1−exp

(
−min

(
1 −

(
𝑏𝑝𝑞 − 𝑎𝑝𝑞

)
, 1 −

(
𝑏𝑞𝑝 − 𝑎𝑞𝑝

) ) )
. (3)

We solve this optimization using Sequential Least Squares Program-
ming as implemented in SciPy.
Given multiple partial reconstructions 𝑆𝑝𝑞 and their intervals

[𝑎𝑝𝑞, 𝑏𝑝𝑞], we next construct consolidated interpretations 𝑆𝑘𝑝 by
considering all combinations of reconstructions that either have
non-overlapping intervals, or have overlapping intervals and sim-
ilar 3D geometry (a Hausdorff distance below 10% of the partial
curve’s lengths). For each such combination, we uniformly sample
the partial reconstructions and fit a new Bézier curve by optimizing
the depth of its control points such that the curve runs close to
the resulting point cloud. We regularize this fitting with a minimal
foreshortening term [Xu et al. 2014] such that the curve extrapolates
smoothly over parts of the stroke that have no correspondence. Fi-
nally, we merge consolidated interpretations that are geometrically
close.

Ellipses. We assume that ellipses represent 3D circles. To lift a
pair of ellipses 𝑠𝑝 and 𝑠𝑞 to 3D, we project 𝑠𝑝 on a plane Π𝑝𝑞 and 𝑠𝑞
on the reflected plane Π′

𝑝𝑞 , where we optimize Π𝑝𝑞 such that the
resulting 3D reconstructions 𝑆𝑝𝑞 and 𝑆𝑞𝑝 are most symmetric and
most circular. We optimize the position and orientation of the plane
to minimize the sum of two terms

𝐸ellipse = 𝐸symmetry + 𝐸eccentricity, (4)
where 𝐸symmetry measures the distance between one lifted ellipse
the reflection of the other one

𝐸symmetry = 1 − exp
(
−∥𝑆 ′𝑝𝑞 − 𝑆𝑞𝑝 ∥

)
. (5)

To maximize circularity, we minimize the so-called eccentricity of
the 3D ellipses:

𝐸eccentricity = 1 − exp−max(𝑒 (𝑆𝑝𝑞), 𝑒 (𝑆𝑞𝑝 )) (6)

where 𝑒 (𝑆𝑝𝑞) =
√
(𝑎2+𝑏2)
𝑎 with 𝑎 and 𝑏 being the major and minor

axes of the ellipse.

2 INTEGER PROGRAM FORMULATION
We now detail the terms and constraints of our integer program.We
will release our reference implementation upon acceptance
to ease reproduction

2.1 Optimizing for symmetry
2.1.1 Maximize symmetry. To recover the most symmetric sketch,
we maximize stroke reconstructions which are symmetric w.r.t. mul-
tiple planes. We account for a symmetry correspondence along a
certain axis with the binary variables 𝒙𝒑 , 𝒚𝒑 , 𝒛𝒑 , which if selected,
mean that 𝑠𝑝 is symmetric along an 𝑥 , 𝑦 or 𝑧 symmetry plane re-
spectively.

Symmetry correspondence selection between 𝑠𝑝 and 𝑠𝑞 is realized
by selecting the binary variable 𝒄𝒑𝒒 . 𝒙𝒑 , 𝒚𝒑 and 𝒛𝒑 can only be se-
lected if at least one correspondence is selected along the respective
axis. ∑︁

𝑞

𝒄𝒙𝒑𝒒 ≥ 1 −𝑀 ∗ (1 − 𝒙𝒑) (7)∑︁
𝑞

𝒄
𝒚
𝒑𝒒 ≥ 1 −𝑀 ∗ (1 −𝒚𝒑) (8)∑︁

𝑞

𝒄𝒛𝒑𝒒 ≥ 1 −𝑀 ∗ (1 − 𝒛𝒑) (9)

where 𝑐𝑘𝑝𝑞 is a symmetry correspondence along axis k. The first
term of our score function maximizes the total amount of differently
oriented symmetries.

𝐹symmetry =
∑︁
𝑝

x𝑝 + y𝑝 + z𝑝 . (10)

2.1.2 Symmetry correspondence selection. A stroke 𝑠𝑝 can have
symmetry correspondences with several other strokes. Spattially
compatible stroke candidates are merged into groups 𝑆𝑘𝑝 .

A group must have at least one selected correspondence.

𝑺𝒌𝒑 ≤
∑︁
𝑞

𝒄𝒑𝒒 (11)

Similarly, a group has to be selected if at least one if its correspon-
dences is selected.

𝑺𝑘𝑝 ≤
∑︁
c∈C𝑘

𝑝

c (12)

, where C𝑘
𝑝 denotes the set of all correspondences forming group

𝑆𝑘𝑝 .
Finally, a group can only be selected if the stroke’s selection

variable 𝒔𝒑 has also been selected.∑︁
𝑘

𝑺𝒌𝒑 ≤ 𝒔𝒑 (13)

Two strokes 𝑠𝑝 and 𝑠𝑞 can have several symmetry correspondence
candidates with each other, the set of which is denoted by C𝑝𝑞 .
However, only one of them should contribute to the selected group.∑︁

𝑐∈C𝑝𝑞
𝒄 ≤ 1,∀𝑝, 𝑞 (14)
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The first pass of our method constraints all strokes to be at least
symmetric w.r.t. one global symmetry axis 𝑘 ∈ {𝑥,𝑦, 𝑧}. A stroke
can only be selected if at least one of its correspondences is along 𝑘 .

𝒔𝒑 ≤
∑︁
𝑞

𝒄𝒌𝒑𝒒 (15)

To favor the selection of closeby reconstructions 𝑆𝑝𝑞 , weminimize
the distance between stroke reconstructions and the selected stroke
group dist(𝑆𝑘𝑝 , 𝑆𝑝𝑞):

𝐹proximity =
∑︁
𝑝,𝑘

∑︁
𝑐𝑝𝑞 ∈C𝑘

𝑝

dist(𝑆𝑘𝑝 , 𝑆𝑝𝑞)cpq . (16)

Curved lines. To ensure that the 3D reconstruction of a curved
stroke is well supported by its partial correspondences with other
strokes, wemeasure the overlap between each partial reconstruction
𝑆𝑝𝑞 and 𝑆 ′𝑞𝑝 , where 𝑆 ′𝑞𝑝 denotes the reflection of the symmetric
reconstruction 𝑆𝑞𝑝 with respect to its symmetry plane. We then
measure the overall support of curved strokes as

𝐹support =
∑︁
𝑝,𝑞

overlap(𝑆𝑝𝑞, 𝑆 ′𝑞𝑝 )c𝑝𝑞 . (17)

2.2 Connectivity
2.2.1 Intersection selection. A naive solution to identify 3D inter-
sections would be to pre-compute intersections between all pairs of
groups (𝑆𝑘𝑝 , 𝑆𝑙𝑞), and then to set the binary variable i𝑝𝑞 to 1 during
optimization if the selected groups form an intersecting pair. How-
ever, this solution is computationally prohibitive because it requires
associating a binary variable i𝑘𝑙𝑝𝑞 with each possible pair of group,
and constraining this variable to only be selected if and only if the
two groups are selected, yielding numerous quadratic constraints of
the form i𝑘𝑙𝑝𝑞 = SkpSlq. Our solution to avoid these additional binary
variables consists in detecting intersections between consolidated
groups within the integer program. Before optimization, we project
each 2D intersection 𝑖𝑝𝑞 onto all 3D groups 𝑆𝑘𝑝 and 𝑆𝑙𝑞 . During opti-
mization, we evaluate the distance between these projections for
the selected groups. Directly computing such distances is a non-
linear operation, formulating which in an integer program would
require quadratic constraints. We instead employ a symmetric range
constraints formulation, where we only prohibit the selection of
an intersection if the depth difference between the projections is
outside a specified range. If the difference lies within these bounds,
we let the solver decide whether i𝑝𝑞 should be set to 1 to maximize
the connectivity terms of the objective function.

More specifically, the projected depth of 𝑖𝑝𝑞 onto 𝑆𝑘𝑝 is𝑑𝑒𝑝𝑡ℎ(𝑆𝑘𝑝 , 𝑖𝑝𝑞).
Since only a single stroke group can be selected, the projected depth
of 𝑖𝑝𝑞 on the final reconstruction of 𝑠𝑝 is

𝑑𝑒𝑝𝑡ℎ(𝑠𝑝 , 𝑖𝑝𝑞) =
∑︁
𝑘

𝑑𝑒𝑝𝑡ℎ(𝑆𝑘𝑝 , 𝑖𝑝𝑞)𝑺𝒌𝒑 (18)

Employing a symmetric range constraint formulation, 𝑖𝑝𝑞 can only
be selected as a 3D intersection if the following hold:

𝑑𝑒𝑝𝑡ℎ(𝑠𝑝 , 𝑖𝑝𝑞) − 𝑑𝑒𝑝𝑡ℎ(𝑠𝑞, 𝑖𝑝𝑞) ≤ 𝜏 (𝑖𝑝𝑞) (19)

and
− (𝑑𝑒𝑝𝑡ℎ(𝑠𝑝 , 𝑖𝑝𝑞) − 𝑑𝑒𝑝𝑡ℎ(𝑠𝑞, 𝑖𝑝𝑞)) ≤ 𝜏 (𝑖𝑝𝑞) (20)

where 𝜏 (𝑖𝑝𝑞) is a threshold set to 10% of the median length of all
stroke groups 𝑆𝑘𝑝 and 𝑆𝑙𝑞 .

For 𝒊𝒑𝒒 to be selected, equations 2.2.1 and 2.2.1 must hold. In our
integer program, this is achieved via the following constraints

𝑑𝑒𝑝𝑡ℎ(𝑠𝑝 , 𝑖𝑝𝑞) − 𝑑𝑒𝑝𝑡ℎ(𝑠𝑞, 𝑖𝑝𝑞) ≤ 𝜏 (𝑖𝑝𝑞) +𝑀 (1 − 𝒊𝒑𝒒) (21)

− (𝑑𝑒𝑝𝑡ℎ(𝑠𝑝 , 𝑖𝑝𝑞) − 𝑑𝑒𝑝𝑡ℎ(𝑠𝑞, 𝑖𝑝𝑞)) ≤ 𝜏 (𝑖𝑝𝑞) +𝑀 (1 − 𝒊𝒑𝒒) (22)
, where𝑀 is a big constant. This ensures that 𝒊𝒑𝒒 is equal to 0 if the
depth difference is bigger than 𝜏 (𝑖𝑝𝑞).
Additionally, an intersection 𝑖𝑝𝑞 can only be selected if both 𝑠𝑝

and 𝑠𝑞 have been reconstructed via the selection of a stroke group.

𝒊𝒑𝒒 ≤ 𝑺𝒌𝒑 (23)

𝒊𝒑𝒒 ≤ 𝑺𝒌𝒒 (24)
To avoid the reconstruction of dangling strokes, we enforce that

a selected stroke must have at least one intersection.

𝒔𝒑 ≤
∑︁
𝑞

𝒊𝒑𝒒 (25)

2.2.2 Line coverage. To measure sketch connectivity, we compute
the line-coverage for each stroke:

𝐹coverage =
∑︁
𝑝

(
max
𝑖∈I𝑝

𝑡𝑝 (𝑖) − min
𝑖∈I𝑝

𝑡𝑝 (𝑖)
)
s𝑝 , (26)

where I𝑝 denotes the set of intersections selected along stroke 𝑠𝑝 ,
and 𝑡𝑝 (𝑖) denotes the arc-length parameter value of intersection 𝑖 .

In our integer program, we choose the minimum and maximum
intersection by equipping each intersection 𝑖𝑝𝑞 with two binary
variables 𝒂𝑭𝒑𝒒 and 𝒂𝑳𝒑𝒒 , respectively. The line-coverage can then be
reformulated as

𝐹coverage =
∑︁
𝑝

∑︁
𝑖𝑝𝑟 ∈I𝑝

𝑡𝑝 (𝑖𝑝𝑟 )a𝐿𝑝𝑟 −
∑︁

𝑖𝑝𝑟 ∈I𝑝
𝑡𝑝 (𝑖𝑝𝑟 )a𝐹𝑝𝑟 . (27)

For each stroke, at most one minimum and maximum intersection
can be selected. ∑︁

𝑞

𝒂𝑭𝒑𝒒 ≤ 1 (28)∑︁
𝑞

𝒂𝑳𝒑𝒒 ≤ 1 (29)

An intersection can only be selected as a minimum or maximi-
mum intersection if 𝑖𝑝𝑞 is a 3D intersection and not an occlusion.

𝒂𝑳𝒑𝒒 ≤ 𝒊𝒑𝒒 (30)

𝒂𝑭𝒑𝒒 ≤ 𝒊𝒑𝒒 (31)
At least one minimum and maximum intersection should be se-

lected if a 3D intersection is selected along stroke 𝑠𝑝 .∑︁
𝑞

𝒂𝑭𝒑𝒒 ≥ 𝒊𝒑𝒒,∀𝑖𝑝𝑞 (32)∑︁
𝑞

𝒂𝑳𝒑𝒒 ≥ 𝒊𝒑𝒒,∀𝑖𝑝𝑞 (33)
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2.2.3 Ellipses. Coverage cannot be measured on ellipses, since they
do not have a start and end. Following Gryaditskaya et al. [2020],
we instead favor 3D reconstructions of ellipses that are most circu-
lar. We achieve this goal by penalizing less circular interpretations

𝑒 (𝑆𝑘𝑝 ) =
√
(𝑎2+𝑏2)
𝑎 where 𝑎 and 𝑏 are the major and minor axes of the

reconstructed ellipse, yielding the penalty term for elliptic strokes

𝐹ellipses = −
∑︁
𝑝,𝑘

𝑒 (𝑆𝑘𝑝 )S𝑘𝑝 . (34)

We use 𝐹ellipses in place of 𝐹coverage for elliptic strokes.

2.2.4 Stroke anchoring. We favor well-anchored stroke reconstruc-
tions. A stroke is weakly anchored if it passes through a single
high-valence intersection and fully anchored if it passes through at
least 2 high-valence intersections. The anchoring quality of a stroke
𝑠𝑝 is expressed by the binary variables𝑤𝑝 and 𝑓𝑝 , representing if 𝑠𝑝
is weakly or fully anchored, respectively. We penalize the strokes
inversely to their degree of anchoring:

𝐹anchoring = −
∑︁
𝑝

(
2 −w𝑝 − f𝑝

)
s𝑝 , (35)

For each high-valence intersection 𝑣𝑝𝑞 , we count the number of
differently axis-classified strokes involved in neighbouring intersec-
tions. An intersection belongs to a certain axis-class if one of its two
strokes belongs to that axis-class. In pre-processing, during camera
calibration, each stroke gets assigned an axis label which indicates
which one of the three major vanishing points it converges towards,
or if it does not converge to one at all. So each stroke 𝑠𝑝 has an axis
label 𝑘 ∈ 𝑥,𝑦, 𝑧,𝑤 , with𝑤 meaning that a stroke does not converge
to one of the major vanishing points.
Each high-valence intersection 𝑣𝑝𝑞 is equipped with axis-class

activation variables 𝒌𝒑𝒒 , where 𝑘 denotes the axis. Each such axis
variable comes with a set of intersections that involve strokes from
the corresponding axis I𝑘

𝑝𝑞 .
𝒌𝒑𝒒 can only be activated if at least one of its intersections is

selected:
𝒌𝒑𝒒 ≤

∑︁
𝑖∈I𝑘

𝑝𝑞

𝒊 (36)

And a high-valence intersection can only be activated if there are
at least 3 differently aligned axis labels selected:∑︁

𝑘

𝒌𝒑𝒒 ≥ 3 −𝑀 (1 − 𝒗𝒑𝒒) (37)

Selected high-valence intersections should be at a certain distance
from each other to provide sufficient anchoring. To account for this,
we impose that the arc-parameter distance of selected high-valence
intersections is bigger than 0.5, i.e., it should span at least half of
the stroke. Here, we use a similar mechanism to the measuring the
line-coverage.
For each stroke, we select only two high-valence intersections,

a first and a last high-valence intersection. We equip each high-
valence intersection 𝑣𝑝𝑞 with two binary variables 𝒗𝑭𝒑𝒒 and 𝒗𝑳𝒑𝒒 .

At most one first and last high-valence intersection can be se-
lected: ∑︁

𝑞

𝒗𝑭𝒑𝒒 ≤ 1 (38)

∑︁
𝑞

𝒗𝑳𝒑𝒒 ≤ 1 (39)

Select at most two high-valence intersections:∑︁
𝑞

𝒗𝒑𝒒 ≤ 2 (40)

High-valence intersections can only be selected as a first or last
intersection, if the actual high-valence intersection is realized:

𝒗𝑳𝒑𝒒 ≤ 𝒗𝒑𝒒 (41)
A fully anchored strokes must have high-valence intersections

that are sufficiently distant from each other:∑︁
𝑞

𝒗𝑳𝒑𝒒𝑡 (𝑖𝑝𝑞) −
∑︁
𝑞

𝒗𝑭𝒑𝒒𝑡 (𝑖𝑝𝑞) ≥ 0.5 −𝑀 (1 − 𝒇𝒑) (42)

Weakly anchored stroke variables𝒘𝒑 should only be activated if
there is at least one high-valence intersection.

𝒘𝒑 ≤
∑︁
𝑞

𝒗𝒑𝒒 (43)

2.3 Score Function
We combine the terms described above to form the score function
to be maximized subject to the listed constraints:
𝐹total = 𝐹symmetry+𝐹support+𝐹proximity+𝐹anchoring+𝐹coverage+𝐹ellipses,

(44)
where the binary optimization variables i𝑝𝑞 and c𝑝𝑞 select intersec-
tions and symmetry correspondences respectively. We solve this
optimization problem with the commercial solver Gurobi [Gurobi
Optimization, LLC 2021].We use a fixed set of weights 𝜆symmetry = 2,
𝜆support = 10, 𝜆proximity = −100, 𝜆anchoring = 5, 𝜆coverage = 4 and
𝜆ellipses = 1..

3 TIMINGS
We provide timings for sketches of increasing complexity in Table 1.
Computation is dominated by three main stages, of roughly equal
time. The first stage, pre-processing, is necessary to calibrate the
perspective camera and compute intersections between all strokes.
The second stage consists in detecting and reconstructing all candi-
date symmetry correspondences. Finally, we call our main algorithm
to perform the global and local symmetric reconstructions.

4 3D RECONSTRUCTIONS
We provide on the next pages a gallery of 3D reconstructions pro-
duced with our method. For each result, we show the input sketch
(left) and a 3D rotation (right).
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Strokes Pre-processing Candidate generation Global reconstruction Local reconstruction Completion Total time
61 1.8 0.4 3.7 0.8 0.2 5.0
116 3.5 1.9 3.3 1.2 1.4 9.7
165 2.5 0.7 1.5 1.1 0.4 5.5
215 3.7 2.4 3.5 2.2 0.5 10.6
393 6.6 3.1 5.3 1.5 1.1 14.9

Table 1. Runtime in minutes for representative sketches.
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