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1 SELECTED VIEWS

We show the chosen views that we use in our quantative evaluation
in Figure 1.
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Fig. 1. The chosen views, which correspond to scene configurations with

complex illumination effects, that were used for the ablations.

2 COMPARISON TO CNSR

We show additional results for same quality and same time compar-
isons against CNSR [Granskog et al. 2020] in Figure 6.

3 COMPARISON TO ANF

In Figure 2 we display a sample of ground truth images used during
the finetuning of the ANF [Işık et al. 2021] pretrained model on
our scenes. Please observe how the complex caustic effects that the
models fails to reproduce, even after finetuning, exist in the ground
truths. The amount of noise in the ground truths is equivalent to
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that in ours but our model is able to both learn these effects and
average out the noise in world space during training.
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Fig. 2. Sample ground truth images used for finetuning ANF on our scenes.

4 COMPARISON TO GT

In Figure 7 we provide difference images for the comparison of our
method to ground truth, using the MAPE metric, to help with visual
inspection.

5 NETWORK ARCHITECTURE

3
512

13

8

512
13

3

𝑣

𝑣

Fig. 3. The architecture of our generator. The positional buffer is shown in

red, all the G-Buffers in orange, the explicit scene representation vector 𝑣 in

blue and the output in white.

The architecture of our generator is the Pixel Generator proposed
by Granskog et al. [2020] with a preconditioning on position (Fig. 3).
The Pixel Generator is an MLP (we use leaky ReLU activations)
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with skip connections on every layer. We map the position buffer
(red) from 3 to 512 channels and then we concatenate all the G-
buffers (orange) and explicit vector 𝑣 (blue) at each layer. The total
hidden layers are 8 with 512 hidden features. In Figure 4 we show
that using a smaller network can provide acceptable results and
lower inference speed, resulting in 13 FPS in our prototype Python
implementation.

Ground Truth

Ours

Hidden Features: 512

Hidden Features: 128

Fig. 4. Using 128 hidden features results in acceptable results and higher

frame rates, but lower quality compared to using 512.

6 MCMC STATES LIFESPAN

23 18 18 16Lifespan:

14 14 11 11Lifespan:

Fig. 5. The 8 longest lifespan MCMC states when training on the Living

Room scene.

In order to evaluate what type of effects our Active Exploration
focuses on, we visualize the MCMC states with the longest lifespan
(consecutive times being the current state) for the Living Room

scene in Figure 5. We observe that our Active Exploration spends
more time on effects that require more training to be represented
such as reflections, glossy highlights and shadows. During training
only the red patch would be rendered and used for training, here
we render the whole image for visualization purposes.

7 SAMPLE REUSE DERIVATION

Given the two options to either reuse or generate a new sample with
respective likelihood 𝑙𝑒𝑥𝑖𝑠𝑡 and 𝑙𝑛𝑒𝑤 , a simple Bernoulli distribution
that respect the likelihood ratio has a probability 𝑝 of reusing defined
by:

𝑝 =
𝑙𝑛𝑒𝑤

𝑙𝑒𝑥𝑖𝑠𝑡 + 𝑙𝑛𝑒𝑤
This Bernoulli distribution can further be skewed as to favor the
reuse case by dividing the likelihood of the reuse case 𝑙𝑒𝑥𝑖𝑠𝑡 by 𝛼 :

𝑝 =
𝑙𝑛𝑒𝑤

𝑙𝑒𝑥𝑖𝑠𝑡
𝛼 + 𝑙𝑛𝑒𝑤

For instance setting alpha to 99 skews the probability distribution
so that for equal likelihood 𝑝 = 99

100
We then assume that the losses 𝐿𝑜𝑠𝑠new and 𝐿𝑜𝑠𝑠exist represent

the negative log-likelihood of the network output with respect to a
probability distribution parameterized by the ground truth, which
for the L2 loss case would be a Normal distribution centered around
the ground truth value and for the L1 loss is a Laplace distribution
also centered around the ground truth value. We thus have:

𝜎 (𝐿𝑜𝑠𝑠exist − 𝐿𝑜𝑠𝑠new + 𝛽) = 𝑒𝐿𝑜𝑠𝑠exist−𝐿𝑜𝑠𝑠new+𝛽

1 + 𝑒𝐿𝑜𝑠𝑠exist−𝐿𝑜𝑠𝑠new+𝛽

𝜎 (𝐿𝑜𝑠𝑠exist − 𝐿𝑜𝑠𝑠new + 𝛽) = 𝑒−𝐿𝑜𝑠𝑠new

𝑒−𝐿𝑜𝑠𝑠exist𝑒−𝛽 + 𝑒−𝐿𝑜𝑠𝑠new

𝜎 (𝐿𝑜𝑠𝑠exist − 𝐿𝑜𝑠𝑠new + 𝛽) = 𝑙𝑛𝑒𝑤
𝑙𝑒𝑥𝑖𝑠𝑡
𝑒𝛽

+ 𝑙𝑛𝑒𝑤
Which inspired our reuse strategy.
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Fig. 6. Additional same quality and same time results with CNSR [Granskog et al. 2020].
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Fig. 7. Comparison of our method to ground truth with additional difference images, using the MAPE metric, for visual inspection.
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