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We present additional details of the various steps of our algorithm,
in particular on compositing and data augmentation, on the imple-
mentation and on the RGB shadow images generation.

1 COMPOSITING AND DATA AUGMENTATION DETAILS
Online compositing. We randomly scale the linear sun images by

2u with u in [−0.1, 0.1], separately for each color channel, allowing
a small shift in sun color, and randomly scale the sky image by 2u
with u in [−1.0, 1.0] (giving a uniform sampling between 0.5 and
2, centered at 1), with the same value for each channel. The latter
is a simple approximation for sky turbidity since higher turbidity
results in higher sky emission. We then sum sky and sun images.

Data-augmentation. To be robust to different exposures in the
input, we apply a random exposure operation by multiplying the
image by 2e where e is in [−2, 2]. Similary, to handle white bal-
ance differences, we multiply each channel by 2w withw randomly
selected in [−0.1, 0.1], separately for each channel.

We now have two linear images: one for source and one for target
lighting condition. We perform the standard gamma correction
operation to convert to sRGB with gamma randomly selected in
[2.0, 2.8]We clip to 1 for the source image, since all input images will
be in the [0, 1] range, but we clip the output to 2, to avoid zeroing
the gradients and thus adversly affecting training for values slightly
above 1.
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2 GENERATING THE RGB SHADOW IMAGES FOR
TRAINING

RGB shadow images depend both on the source lighting condition,
as we need to sample pixels from the source images, and on the
target lighting condition as shadows are cast from the target sun
direction. To generate the complete set of RGBD shadow images
for training, we would have to render 49×(5+49) images for each
viewpoint. Our RGBD shadow images depend on the target sun
position for the shape of the shadows, and also on the source images
for the color reprojection. These source images are composited sun
and sky renderings. Given the number of viewpoints in each scene,
the cost of rendering and storing these images would be too high.
Instead, we only compute the colors for 5 source sun positions, and
thus compute 49×(5+5) images for each viewpoint. During training,
we use the closest source sun position rendering stored for the
sun layer in the compositing. We can then apply the same image
processing transformations on the fly as for the source and target
image to the color values in the RGBD shadow images using the
same random variables for consistency.

3 INPUT IMAGES NEEDED FOR SYNTHETIC SCENES
RECONSTRUCTION

We list the number of input images used for multi-view reconstruc-
tion for all our training scenes in Table 1.

Table 1. List of training scenes and their statistics. Rrc is the number of
images used for reconstruction.

Scene Old Street Oriental House Palm House Hacienda House w/ trees
Rrc 75 150 75 60 190

Scene Manor Arches Nvidia Street Nvidia Square Village
Rrc 480 75 1180 1000 179

4 ABLATION: NO SHADOW REFINEMENT, NO RGB
SHADOW IMAGES

The main paper shows ablation with either the RGB shadow images
or the refinement networks disabled. For completeness, Fig. 1 illus-
trates what happens when disabling both. If we completely remove
shadow refinement from our solution, shadow removal is slightly
worse, and shadow re-synthesis can be problematic (Fig. 1). For this
test we remove the shadow refinement subnetworks and we do not
provide the RGB shadow images to the network, instead we provide
gray-scale shadow masks.
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Fig. 1. Ablation study for shadow refinement. Without the shadow refine-
ment sub-network nor RGB shadow images shadow reconstruction is less
effective. Please see supplemental for more examples.

5 IMPLEMENTATION DETAILS
• We do not apply transformations such as tanh or sigmoid at
the end of the network allowing to produce images with a
higher range than [0,1].

• We export our scenes using a 3DSMax to Mitsuba format
exporter that we have developed in the 3DSMax scripting
language. This gives flexibility in rendering thanks to mitsuba
but we loose a bit of quality of the materials as our exporter
only partially handles “baked” materials. The specificities of
the V-ray materials in the scenes used poses some issues of
compatibility with Mitsuba.

• Generating path traced image for reconstruction would be
prohibitively expensive as we require high resolution and
little noise. Instead we generate lower resolution ambient
occlusion images, upscale and multiply them with full reso-
lution albedo images, which give a coarse approximation to
global illumination (see Fig. 2). This approximation is suffi-
cient for reconstruction in most cases. For some scenes, the
repetitive nature of the synthetic geometry and lack of tex-
ture detail, requires additional processing to allow SfM and
MVS to succeed, e.g., by adding calibration targets in very
uniform textures.

Fig. 2. Top: From left to right, the rendered ambient occlusion, the albedo ,
and the multiplication of both. The right most image is used along other
point of views to reconstruct the scene and get MVS-like data. Bottom: The
obtained reconstruction.

• Some ground truth scenes we used had very repetitive and/or
flat textures which led to poor quality or failure in reconstruc-
tion when using Sfm + MVS. To allow for a reconstruction
with the same level of quality as with real pictures we had
to modify some textures in two of our 10 scenes by adding
targets on them. These modified textures were only used for
reconstruction.

• Reconstructed scenes are not aligned with the original ground
truth ones. To align them we used pairs of 3D points of the
original ground truth scene and the proxy using the respec-
tive original and calibrated cameras. We then used iteratively
reweighted least squares on those pairs to compute a trans-
formation from proxy space to original (3DSMax) space.
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