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Fig. 1. Left: screenshot from a phone running a modified gsplat.js for the bicycle scene. Right: same scene,
processed with our method, reaching a significantly lower memory footprint and shorter download time.

3D Gaussian splatting provides excellent visual quality for novel view synthesis, with fast training and real-
time rendering; unfortunately, the memory requirements of this method for storing and transmission are
unreasonably high. We first analyze the reasons for this, identifying three main areas where storage can
be reduced: the number of 3D Gaussian primitives used to represent a scene, the number of coefficients for
the spherical harmonics used to represent directional radiance, and the precision required to store Gaussian
primitive attributes. We present a solution to each of these issues. First, we propose an efficient, resolution-
aware primitive pruning approach, reducing the primitive count by half. Second, we introduce an adaptive
adjustment method to choose the number of coefficients used to represent directional radiance for each
Gaussian primitive, and finally a codebook-based quantizationmethod, together with a half-float representation
for further memory reduction. Taken together, these three components result in a ×27 reduction in overall size
on disk on the standard datasets we tested, along with a ×1.7 speedup in rendering speed. We demonstrate
our method on standard datasets and show how our solution results in significantly reduced download times
when using the method on a mobile device (see Fig. 1).
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1 INTRODUCTION
Novel view synthesis (NVS), i.e., generating new 3D views of a scene captured with photographs or
video, has seen impressive progress over the last 25 years, ever since the first work on light fields and
view-dependent texturing [Debevec et al. 2023; Levoy and Hanrahan 1996]. Traditional image-based
rendering [Buehler et al. 2001; Shum et al. 2008] progressively adopted deep learning [Hedman
et al. 2018; Riegler and Koltun 2020], and in recent years led to neural rendering [Tewari et al. 2022;
Xie et al. 2022] that has dominated the field. Previous methods provide different tradeoffs between
speed, visual quality, and memory, usually sacrificing at least one; we present a memory-efficient
approach based on 3D Gaussian Splatting (3DGS) that results in an NVS method that excels in all
three criteria.
Neural Radiance Fields (NeRFs) [Barron et al. 2022; Mildenhall et al. 2020] introduced a new

implicit scene representation based on a Multi-Layer Peceptron (MLP), that encodes volumetric
density as a proxy for geometry and directional radiance. Rendering is performedwith ray-marching.
This solution provided unprecedented visual quality for NVS, but came at the cost of very expensive
optimization to train the MLP, and slow rendering times. Several methods accelerated training
and rendering, typically using spatial data structures (e.g., [Fridovich-Keil and Yu et al. 2022; Sun
et al. 2022]) or encodings such as hashing [Müller et al. 2022], but sacrificed visual quality. More
recently 3DGS proposed an explicit representation using 3D Gaussian primitives in space, each
carrying a set of attributes such as position, covariance (anisotropic scale and rotation), opacity,
and Spherical Harmonic (SH) coefficients to represent directional radiance. 3DGS combines the
performance benefits of all previous methods: fast training, high visual quality, and is the first
to provide real-time rendering speed without quality degradation. However, the original method
results in a representation with an unreasonably high memory footprint (700Mb-1.2Gb for the
scenes presented). This memory footprint is problematic for storage and processing, and also
prohibitive for streaming to mobile devices.

The original 3DGS method starts with a sparse set of 3D primitives and progressively densifies
based on gradients. This is an effective strategy, but is wasteful. Similarly, the approach uses three
SH bands for all primitives in the scene, even in cases where there are no view-dependent effects,
where a single color value would suffice. Finally, most primitive attributes do not require very high
accuracy or dynamic range, making them amenable to quantization.

We first analyze these three aspects, i.e., number of primitives, SH band utility, and quantization,
and propose a complete and effective solution. To reduce the number of primitives, we extend the
existing pruning scheme by developing a resolution-aware redundancy score using an efficient
two-step algorithm that is used to eliminate approximately 60% of the primitives compared to
the baseline. We introduce an adaptive adjustment method for SH bands, where we reduce the
number of bands for each primitive during training. We do this with a combination of contribution
estimation and multi-view consistency evaluation to identify primitives without view-dependent
appearance. Finally, we present a codebook quantization approach for some attributes and use
half-floats to further reduce the stored size of the representation. Taken together, these three steps
reduce the size of the 3DGS representation by 27×, resulting in a 1.7× increase in rendering speed.
In summary, we present three main contributions:
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• An efficient, resolution-aware primitive pruning approach, that reduces unnecessary points
during optimization, leading to a total reduction of the primitive count by 60%.

• An adaptive adjustment method to choose the number of SH bands required for each 3DGS
primitive, significantly reducing overall memory footprint.

• A codebook-based quantization method, together with a half-float representation for more
efficient storage of the representation, resulting in further memory reduction.

Even though our ultimate goal is to reduce the final, stored size of the representation, depending on
the implementation, the resulting 3DGSmodel can have significantly reduced memory requirements
at inference-time rendering. We present a complete evaluation of the standard set of datasets
used in 3DGS [Kerbl et al. 2023], showing the effect on memory reduction and rendering speed
across different scene types. We also present an implementation of our method in a WebGL
framework [Ebert [n. d.]] that demonstrates 20–30 times faster downloads on a mobile phone.

2 RELATEDWORK
Research in Novel View Synthesis (NVS) from an unstructured set of input photographs has seen
an explosion in recent years [Tewari et al. 2022]. Throughout the various available solutions, we
observe different compromises between quality, speed, and memory footprint. In this section we
briefly review the evolution of NVS algorithms, starting with Image-Based Rendering (IBR), all the
way to the most recent real-time radiance field methods.

IBR algorithms typically use a geometry proxy, usually a triangle mesh, to re-project information
stored in the input views to the novel view. Popular implementations [Bonopera et al. 2020] of the
Unstructured Lumigraph Rendering [Buehler et al. 2001] use Multi-View Stereo to create the proxy
geometry, reproject the RGB colors of the input views to the novel view and blend them using
handcrafted heuristics to render [Chaurasia et al. 2013; Eisemann et al. 2008]. Such heuristics were
later replaced by deep learning methods trained on multi-view datasets [Hedman et al. 2018]. These
techniques achieve satisfactory display speed but are prone to artifacts generated by reconstruction
errors in the proxy geometry. Regarding memory, these methods need to store all input images on
the GPU: this does not scale well as the complexity of the scene increases and we need more input
views to represent it.

Recently, Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] introduced a differentiable
volumetric representation for NVS. The differentiable nature of the representation allows to optimize
the properties of the scene with Stochastic Gradient Descent (SGD) to fit the input images. In the
original paper, the scene is represented by a very compact, but slow Multi-Layer Perceptron (MLP).
The MLP is an implicit representation, encoding radiance and density as a proxy for geometry; it is
rendered with ray-marching, which requires the evaluation of the MLP at each sample. Even for
small scenes, using the MLP results in optimization (“training") times that take days and rendering
that requires minutes per frame. Several improvements followed [Barron et al. 2021, 2022], but the
underlying complexity remained. On the other hand, MLPs are an extremely compact representation
that only needs a handful of megabytes (MB) of memory to enable rendering in high quality.
To improve on speed, both in terms of rendering and training, some methods [Sun et al. 2022]

store the scene representation in a voxel grid, often paired with a shallow MLP [Müller et al.
2022] to decode latent features to density and color. To deal with the cubic memory complexity
of voxel grids, various methods suggest sparse structures [Fridovich-Keil and Yu et al. 2022; Liu
et al. 2020; Yu et al. 2021] or compression schemes using hash functions [Müller et al. 2022]
and tensor decompositions [Chen et al. 2022]. As a noteworthy example, Zip-NeRF [Barron et al.
2023] combines the benefits of discrete hash-based representations [Müller et al. 2022] with the
anti-aliasing properties of MipNerf360 [Barron et al. 2022]. MeRF [Reiser et al. 2023] combines a
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low-resolution voxel grid and a tri-plane decomposition to achieve memory footprint compression
of voxel-based representations in unbounded scenes. Shell-based methods [Wang et al. 2023] and
adaptive surfaceness [Turki et al. 2023] recently helped to accelerate rendering speed by using
fewer samples per ray, but still suffer from limitations in quality and speed. In all these cases, there
is a significant trade-off between quality, speed, and memory consumption. When the extent of
the scenes is relatively large, i.e., the MipNeRF360 dataset [Barron et al. 2022], this becomes more
apparent: for a given memory footprint, the quality of grid-based solutions quickly deteriorates as
the scene grows. The interplay between speed, quality, and memory consumption in real-world
scenes is analyzed and presented in Sec. 6.2.
When real-world scenes are represented as a volumetric voxel grid, most of the space remains

unoccupied. Many previous techniques use data structures or algorithms to skip empty space:
Instant-NGP [Müller et al. 2022] uses an occupancy grid during traversal, while Plenoctrees [Yu
et al. 2021] prune an octree to remove nodes that represent empty space. In contrast, 3D Gaussian
Splatting (3DGS) [Kerbl et al. 2023] is an inherently sparse representation for radiance fields,
allowing the gradual formation of anisotropic 3D Gaussians—i.e., volumetric primitives in space
amenable to rasterization—thus naturally omitting empty space. The primitive-based nature of
3DGS avoids the cubic complexity of voxel-based implicit radiance field representations, while
achieving quality that is usually on par (and sometimes surpasses) high-quality methods (e.g.,
MipNeRF360 [Barron et al. 2022]). Most importantly, 3DGS achieves unprecedented rendering
speeds of 100+ frames per second (FPS) at this quality. However, in the original paper, the memory
footprint of the 3DGS representation is significantly higher than previous methods. In this paper,
we identify and address the factors that make 3DGS use excessive amounts of memory.

In unpublished, concurrent work (preprints), significant improvements have been made for
voxel-based representations [Duckworth et al. 2023]. Similarly, several such preprints propose
methods to compress the 3DGS representation [Fan et al. 2023; Girish et al. 2023; Lee et al. 2023;
Navaneet et al. 2023], by at least an order of magnitude. These works explore similar solutions
to ours, but either focus on a single way to compress the scene [Navaneet et al. 2023] or do not
cull redundant Gaussians as we do [Girish et al. 2023]. The method closest to ours [Fan et al.
2023] achieves 37% lower compression than ours, with similar quality reduction. We provide a
detailed comparison to concurrent work in the Appendix. Outside academia, 3DGS has attracted
the interest of practitioners, who have explored the potential to compress a 3DGS scene with
hardware-accelerated texture compression of GPUs [Pranckevicius [n. d.]], which can be seen as a
hardware-oriented alternative to our codebook compression.

3 ANALYZING 3DGS MEMORY USAGE
Our goal is to significantly reduce the memory footprint of 3DGS, bringing it to the level of the
most compact radiance field representation, while maintaining the speed and quality advantages of
the initial method. To do this, we first analyze the memory footprint of the model and the various
parameters that affect memory usage. We start with a brief review of 3DGS, focusing on the parts
that related to storage.
3DGS models a scene as a set of 3D Gaussian primitives (which we represent as ellipsoids, see

Fig. 2, right), each centered at a given point. Each primitive has a set of attributes, namely opacity
(used for alpha-blending), covariance (i.e., anisotropic scale and rotation), and spherical harmonics
(SH) to represent diffuse directional radiance. The technique is usually initialized with the point
cloud produced by the camera calibration algorithm. This initial point cloud is far too sparse for
novel view synthesis; consequently, 3DGS optimization includes a method for adaptive control of
the number of Gaussians. In areas that are initially empty or missing details, the 3D Gaussians are
densified by adding more primitives. A simple measure is used to control densification, namely
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Fig. 2. 3DGS produces photo-realistic renderings from input views and sparse points. Rendering the Gaussians
as ellipsoids instead of splats reveals that each scene is modeled by millions of primitives. Each primitive
stores a significant amount of information: position 𝑝 , rotation quaternion 𝑞, scale 𝑠 , opacity 𝛼 , color, and 3
bands of spherical harmonics. This leads to the exceedingly high memory consumption of 3DGS scenes.

the magnitude of the gradient of primitive positions: where the gradient is large, primitives are
added. In addition, primitives that have low opacity (and thus do not contribute in the rendering),
or primitives with a very large world space size, are regularly culled.
We first analyze the resulting representation, observing that in many cases, 3DGS creates

unnecessarily dense sets of primitives. An ideal densification strategy would avoid this in the first
place; however, reliably identifying the density of primitives required is hard since it would amount
to knowing the solution to the optimization problem beforehand. Consequently, we address the
issue of excessive primitive density by determining which primitives are redundant; as we show
later, this is strongly dependent on the scale and resolution of the observed details.

The memory footprint of the attributes for a given 3DGS primitive is as follows: position, scale,
and color (3 floats each), rotation (4 floats for a quaternion), opacity (1 float), and the SH coefficients.
This leads to a primitive structure of 14+3

∑𝑁
𝑖=1 (2𝑖 +1) floats, where 𝑁 = 0, 1, 2, . . . is the number of

SH bands. When using 3 bands as in the original paper, each primitive requires 59 floats of storage,
of which 45 (or 76%) are used by SH to model view-dependent effects.

Our second observation is that this results in wasteful memory utilization, as most parts of the
scenes include entirely or mostly diffuse materials, which can in principle be modeled well with just
the base (RGB) color. In many cases, SH is used to represent view-dependent material appearance.
It is however important to note that view-dependent effects in 3DGS and similar methods can also
be modeled by combinations of several primitives. A typical case is the “reflected geometry” that
such methods create behind a reflective surface, used to model moving highlights or reflections.
We introduce a new approach that uses a variable number of spherical harmonics bands, enabling
them only when they are actually required, thus allocating memory where it is really needed.

Our third observation relates to the effective dynamic range and required accuracy of many of the
primitive attributes. Notably, opacity, scale, rotation, and the SH coefficients do not require very
high dynamic range, nor are they very sensitive to small inaccuracies. We will exploit this fact to
introduce a post-processing step that further compresses the representation, using a clustering-
based codebook approach. In contrast, reducing the accuracy of the positions of the primitives in a
similar fashion leads to a significant degradation in quality.

These three observations lead us to the memory reduction methods we present next.

4 MEMORY REDUCTION FOR 3DGS
Based on the analysis presented above, we first present a method to identify redundant primitives
and prune them during optimization. Next, we introduce a method allowing a variable number of
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SH bands for each primitive, and finally, a codebook compression method that performs quantization
as post-processing for attributes that do not require high accuracy. An overview of our method is
illustrated in Fig. 3.

Threshold

Compute
Redundancy

Rotation

Scaling

Opacity

Color + SHPrune

1. Pruning (start-to-end) 2. SH Assignment (halfway) 3. Codebook (after)

+0.03db / 2.37× -0.14db / 8.0× -0.21db / 27.4×

Fig. 3. Left: During training, every 1000 iterations our method evaluates a redundancy score in space, which
is then projected to the primitives. Redundant primitives are then culled. Middle: At 15K iterations when
densification stops, our method analyzes the SH coefficients to determine which primitives can be represented
with 0 (just RGB) 1, 2, or 3 SH bands, which allows us to omit storing unnecessary SH coefficients. Right:
Finally, at the end of the training, we perform a codebook quantization of the remaining values, except for
primitive positions. The relative reduction of each stage is shown in the figure, for a total of 27 times reduction
in memory with 0.21 db PSNR drop on average over all our datasets.

4.1 Scale- and Resolution-aware Redundant Primitive Removal
During optimization, the original 3DGS approach regularly culls primitives that fall below a specified
opacity threshold, as they contribute little to the final image. To limit the number of primitives, a
straightforward solution would be to amplify this policy and simply remove low-opacity primitives
more aggressively, e.g., by erasing a specified percentage each time. Doing so can already limit
the final number of primitives, and hence the memory footprint of the representation. However,
as we have observed, 3DGS’ adaptive densification can lead to regions with an exorbitantly high
number of Gaussians. Therefore, we propose to estimate this spatial redundancy and combine this
information with low-opacity filtering to achieve a highly effective culling strategy.
The goal of our method is to first identify regions in space that have redundant primitives. In

essence, we are searching for regions where a large number of primitives exist, but here each of
these primitives contributes little to the resulting rendered image. To make this decision for each
Gaussian primitive 𝑔 in space, we find the number of other primitives 𝑔′ overlapping a spherical
region around 𝑔. To choose the sphere size, we take the world space footprint of pixels that observe
𝑔 into account. For a given view 𝑗 , the pixel footprint at 𝑔 identifies the world-space extent of a
pixel projected to 𝑔’s depth as seen from 𝑗 (see Fig. 4(a,b)). Ideally, a 3D region around 𝑔 of that
extent should be occupied by a low number of primitives; densely-packed clusters of Gaussians in
that region would surpass the amount of detail that can be distinguished from 𝑗 .

The sphere extent is chosen based on the pixel footprint of the closest view in which 𝑔 is visible
(i.e., inside the camera frustum). The closest view corresponds to the smallest pixel footprint 𝑎min
at 𝑔, which yields a spatial extent proportional to the smallest observable detail around 𝑔 from any
view (Fig. 4(c)). This choice makes the redundancy test conservative, i.e., we tend to underestimate
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Fig. 4. Our resolution and scale-aware redundancy metric measures how necessary a Gaussian is to represent
the scene. a) Each camera can capture details of specific resolution, the further we move away from the
camera, the smaller the spatial resolution this camera can represent. b) Given multiple cameras for a given
primitive in the scene, multiple resolutions can be represented. c) For each Gaussian 𝑔𝑖 , we consider the
highest resolution 𝑎𝑖

𝑚𝑖𝑛
given the input cameras. We count the number of Gaussians that intersect this region.

Then we prune the Gaussians that intersect with regions that are influenced by more than K other Gaussians.
In this example, Gaussian 𝑔0 will not be pruned because there is at least one region, 𝑎0

𝑚𝑖𝑛
, influenced by no

other Gaussian. While Gaussian 𝑔2 intersects with regions 𝑎1,2,3
𝑚𝑖𝑛

. All these regions have many Gaussians
influencing them, hence 𝑔2 is a good candidate for pruning.

redundancy for most views. In practice, this means that our criterion is consistent with all novel
views that observe a region at a smaller resolution (e.g. they are further away), hence avoiding any
visual degradation compared to the baseline. For novel views that observe the region at a higher
resolution, our method retains the same level of information as the original solution. This could be
seen as taking the camera which determines the maximal sampling rate of the primitive, following
the terminology described in [Yu et al. 2024]. We then find the number of other Gaussian primitives
intersecting a sphere around 𝑔 with a radius equal to 𝑎min

√
3

2 , i.e., half the diagonal of a cube where
each face has area 𝑎min. For the purpose of this intersection test, each Gaussian is represented by
an ellipsoid with its center at the Gaussian’s mean and axis lengths/orientation corresponding to
the Gaussian’s scale/rotation, as defined by 3DGS.

Naïvely computing the above redundancy score is prohibitively expensive for millions of Gaus-
sians. To limit the number of intersection tests, we first apply a k-NN search with a high number
of neighbors (30) on the set of primitives to find candidate intersecting primitives. In addition,
we approximate the sphere-ellipsoid intersection test by scaling the ellipsoids’ axes by the sphere
radius and performing an ellipsoid-point intersection test, which is just a dot product. We count
the number of primitives that pass the intersection test, yielding the spatial redundancy value for
the spherical region centered around each Gaussian.

Counting the number of intersections can be seen as sampling a spatial redundancy score field at
points of interest; rather than sampling the field uniformly, we use the Gaussians’ centers as sample
locations and then propagate the scores computed at these locations to close-by primitives. To
ensure that our approach remains conservative, propagation of the redundancy score to a primitive
is done by choosing the smallest score from all spherical regions where each ellipsoid intersects.
The motivation for this is straightforward: if a Gaussian overlaps a region that is not redundantly
populated, it may contribute crucial detail there, which should be reflected by a low redundancy
score. We do this by keeping a mask of the intersection tests from the first step and taking the
minimum value from the regions intersected, for every primitive.
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Each primitive now has an assigned redundancy score; We sort our primitives based on their
score and filter those whose score is greater than an adaptive threshold 𝜏𝑝 = (` +_𝑟𝜎). Here, ` and
𝜎 are the mean and standard deviation of the redundancy score for all primitives. Effectively, this
adaptive threshold prunes Gaussians whose redundancy score is more than _𝑟 standard deviations
away from the mean. We use _𝑟 = 1 in all our experiments.

Since the redundancy score of each primitive is not independent of other primitives, deleting all
filtered primitives with values greater than 𝜏𝑝 could lead to excessive primitive culling in some
regions. Instead, we delete 50% of filtered primitives. We choose primitives to delete based on low
opacity, as opacity is an objective/independent estimator of the Gaussian’s contribution to the
visual result; culling primitives with low opacity has little impact on image quality.

We found that culling primitives with a redundancy score less than 3—i.e., a primitive contributes
to at least one region where it coincides with just two other primitives—adversely affects quality.
We thus modify 𝜏𝑝 to be 𝜏𝑝 = max (` + _𝑟𝜎, 3). In practice, this means that we do not delete
primitives with a redundancy score lower than 4, since scores are integers.

We also modify the loss during training by adding an 𝐿1 sparsity term on opacity to encourage
opacity values to be as low as possible. This helps to encourage the creation of lower-contribution
primitives and is particularly effective when we cull the bottom 50% of redundant candidate
primitives. The culling process is applied every 1000 iterations during optimization.
The results of this process are evaluated in detail in Sec. 6.2; Interestingly, simple low-opacity

culling gives results close to those achieved by redundancy culling. However, the performance
of each is different depending on the dataset tested. Instead, we combine both, which results in
consistently better performance in all cases, with around 60% of the primitives being culled, and
minimal effect on visual quality. For the simple low-opacity portion, we remove 3% of lowest opacity
primitives each time, with a maximum opacity threshold of 0.05, as removing primitives with larger
opacity values degraded the quality.

4.2 Adaptive Adjustment of Spherical Harmonics Bands
At a high level, spherical harmonics help represent parts of the scene with view-dependent effects,
such as glossy/specular highlights, even though they also provide additional flexibility in the
optimization. As discussed previously, the SH coefficients represent the majority of the memory
footprint of the 3D Gaussians.

Ourmotivation is thus to only use asmany SH bands as are required by a given Gaussian primitive;
in many cases, a single RGB color value may suffice. To find the appropriate representation, we
use a purely numerical metric to determine if a lower-order SH is sufficient to represent the
radiance of the primitive. We do this by evaluating the SH function from all input views; This
operation determines whether the primitive needs to represent view-dependent effects, i.e., if the
fully-evaluated color changes significantly between views. We then use this information to cull SH
bands following two approaches. The first is based on the observation that a primitive that receives
the same color from all input views does not need view-dependent effects; the second is that if the
color of a primitive does not change much when evaluated with fewer, lower band SH coefficients,
the higher-order ones can be ignored.
Concretely, for the first approach, we determine if the evaluated color of a primitive from all

viewpoints has low variance. If this is the case, the Gaussian can be modeled with just a RGB color
(0𝑡ℎ band), and does not need to represent view-dependent appearance (higher bands). Specifically,
for every viewpoint, we calculate the per-channel average `𝑐 and standard deviation 𝜎𝑐 of the color
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ci for each primitive, weighted by average transmittance:

`c =

∑𝑁
𝑖 ci𝑇𝑖∑𝑁
𝑖 𝑇𝑖

, 𝜎c =

∑𝑁
𝑖 (ci − `c)2𝑇𝑖∑𝑁

𝑖 𝑇𝑖
, (1)

where 𝑁 is the number of views containing the primitive, 𝑇𝑖 is the average transmittance of the
primitive on the pixels splatted by view 𝑖 , given by:

𝑇𝑖 =

∑𝑃
𝑘
𝑇𝑖𝑘

𝑃
, (2)

where 𝑃 is the number of pixels that the primitive is splatted to in view 𝑖 , and𝑇𝑖𝑘 is the transmittance
of the primitive for a specific pixel 𝑘 . We then replace the RGB color of all primitives that have a 𝜎𝑐
lower than a threshold 𝜖𝜎 with the average color `𝑐 and disable all of their higher-order SH bands.
𝜖𝜎 is a hyperparameter that we set to 0.04 in all our experiments.

For the second approach, we identify primitives for which dropping the higher-order SH bands
creates only a minor change in their evaluated color across all views. In these cases, the color
computation can use the smaller number of bands and ignore the SH coefficients belonging to the
higher bands. For every viewpoint, we evaluate the color using only the SH coefficients belonging
to the first 𝑞 SH bands for each primitive, resulting in colors 𝑐𝑞 , with 𝑞 ∈ [0, 3] Then, we calculate
the Euclidean distance between the full color 𝑐3 and the remaining three, resulting in three color
distances 𝑑0, 𝑑1, 𝑑2. Finally, we take the average of each distance value across all views, weighted
by average transmittance. We finally choose the lowest band 𝑞 for which 𝑑𝑞 is below a threshold
𝜖cdist and remove the remaining higher bands; 𝜖cdist is a hyperparameter, set to 0.04. After applying
these steps, some primitives maintain all initial bands, while most end up with 2 or fewer SH bands,
removing the need to store respective, higher-order SH coefficients. For our main model, the point
distribution over bands was 89%, 0.1%, 2.7%, 8.2% for 0, 1, 2, 3 bands respectively.

Disabling SH bands as described can result in a small quality degradation; to mitigate this effect,
we apply the SH culling once at the halfway point of 3DGS training (15K iterations, i.e., when
densification stops) and allow the remaining optimization steps to compensate for the adjustment.
To complement our band reduction procedure, we again modify the original 3DGS optimization by
introducing a sparsity loss on SH coefficients. Doing so discourages the use of higher bands, except
where absolutely necessary. As a result, disabling higher bands has a lower chance of adversely
impacting image quality.
We evaluate the effects of primitive reduction and adaptive SH adjustments in Sec. 6.2; Taken

together, after both processes have been applied, the memory reduction is approximately 87%.

4.3 Quantization of the Final Representation
We now exploit our third observation (Sec. 3), that only limited dynamic range and precision need
to be stored for most primitive attributes.
We create a codebook using K-means clustering, i.e., instead of storing the exact value of a

property for every primitive, we store an index to the closest value in a fixed-size codebook.
For vector attributes (e.g., scale), we maintain one shared codebook, but treat the three scalar
components separately, leading to one index per component. Our experiments show that 1-byte
indices allow maximum compression with minimal quality degradation, and thus a codebook size
of 256 entries. E.g., if the initial cost for storing 𝑁 Gaussian scales (3D vectors containing floats) is
3𝑁 × 4 bytes, the cost becomes 3𝑁 + 4 × 256 bytes, including the size of the shared codebook.

We create the following codebooks for Gaussian primitive attributes: one for opacity, one for the
three scaling components, one for the real part and one for the imaginary components of quaternion
rotation, one for the coefficients of the base color, and one per 3-channel color component for
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each of the 15 SH coefficient groups. Hence, with this procedure, we reduce the required memory
for these attributes from 56𝑁 × 4 bytes to 56𝑁 + 20 × 256 × 4 bytes. Since 𝑁 is a number in the
hundreds of thousands or even millions, the second, constant term that represents the overhead for
the codebooks is negligible.
Finally, we found that applying 16-bit half-float quantization to the remaining, uncompressed

floating point values (i.e., position and codebook entries), does not significantly affect the quality.
Thus, we also employ this quantization to reduce our memory requirements even further. In total,
the average reduction in memory is 96.3%, or almost 27× compared to the original 3DGS file size.
Again, we analyze the effect of each of our decisions in Sec. 6.2.

5 IMPLEMENTATION
We implemented our method on top of the original, open-source 3DGS implementation. We will
release the source code of our own implementation1 upon acceptance.
We modified the original method’s simple CUDA k-NN routine to enable the identification

of the nearest neighbor primitive IDs. In contrast to the original approach, we continue culling
low-opacity Gaussians (opacity < 1

255 ) after the 15K iteration mark, since they are neither rendered
nor optimized and thus provide no contribution to image quality.
To incorporate the variable number of SH coefficients with minimal changes to the file format,

in practice, we store 4 sets of primitives, one for each number of SH bands (0, 1, 2, and 3). This has
minimal effect on the parsing of the file.

Although the resolution-aware primitive pruning method and the adaptive adjustment for the SH
bands occur during training and affect GPU memory usage, their effect becomes relevant after the
point of peak usage, so the memory requirements of training remain unaltered. During rendering,
the model benefits from the reduced memory footprint caused by the smaller number of Gaussians
and fewer dynamic SH bands. Fetching a variable number of SH coefficients requires only minor
modifications to the program logic, which incur no discernible slowdown.

We assess the effectiveness of our method in terms of its impact on file size. In particular, one of
the most useful applications is streaming 3DGS representations over the network. To showcase the
benefits of our compression in a real-world use case, we have extended the open-source WebGL
implementation of [Ebert [n. d.]] to incorporate our modified representation. The original codebase
did not include SH coefficient evaluation; we added it to visually reproduce the original 3DGS
results and added display of our adaptive SH coefficient representation. We show results in Sec. 6.1
and in the supplemental video. In our current implementation, the quantized representation is
decompressed at parsing time rather than on-the-fly. Furthermore, we do not yet employ codebooks
during rendering. As demonstrated by concurrent work [Niedermayr et al. 2023], we expect that
integrating these directly into the rendering pipeline would lead to even higher frame rates due to
reduced memory traffic.

6 RESULTS AND EVALUATION
We present extensive results and evaluation of our methods on the standard set of scenes used in
the original 3DGS paper [Kerbl et al. 2023], namely the full MipNeRF360 [Barron et al. 2022] dataset,
two scenes from Deep Blending [Hedman et al. 2018] and two from Tanks&Temples [Knapitsch
et al. 2017]. All results were obtained using an NVIDIA RTX A6000 GPU, running on Linux. Please
note that the FPS measurements of 3DGS variants on our system isolate the runtime of the CUDA
rasterizer routine only, thus focussing on the speedup of image synthesis itself, excluding any
graphics API overheads such as blitting or swapchain presentation.

1https://repo-sam.inria.fr/fungraph/reduced_3dgs/
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6.1 Results
In Tab. 1, we show the effectiveness of our solution. Our primitive reduction reduces the memory
footprint to between 32% to 52% of the original method 2. The average impact on PSNR is minimal,
between -.32 and +.16 dB, that has minimal effect on visual quality. The reason why we not only see
minimal degradation in the visual quality but in some cases improvements is that the primitive and
SH culling can also act as a regularization strategy, forcing the optimization to find solutions that
generalize better. We show that each one of our main contributions—the primitive and SH culling,
and the quantization—are all contributing significantly and comparably to compressing the 3DGS
representation. Each one of these elements approximately cuts down the size of the representation
3× to result in an average of 27× reduction in size across all datasets used in 3DGS [Kerbl et al.
2023]. We note that integrating codebooks and half-float type handling into the renderer would
enable the same reduction for a scene’s VRAM consumption as for its required disk storage.

Table 1. We show the effect of each component of our method as we add them progressively. From top
to bottom, we show the effect of the reduction of the number of primitives, adaptive SH adjustment, and
quantization. In each case, we show the effect on the three test datasets, in terms of SSIM, PSNR, LPIPS, total
memory size, and memory reduction.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method/Metric 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Mem (×Gain) 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Mem (×Gain) 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Mem (×Gain)

Baseline 0.813 27.42 0.217 744MB (×1.0) 0.844 23.66 0.178 412MB (×1.0) 0.899 29.47 0.247 630MB (×1.0)
+Point Culling 0.814 27.43 0.220 339MB (×2.2) 0.844 23.69 0.182 154MB (×2.6) 0.902 29.57 0.247 224MB (×2.9)
+SH Culling 0.811 27.18 0.225 102MB (×7.5) 0.841 23.62 0.187 49MB (×8.0) 0.903 29.67 0.248 62MB (×10.3)
+Quantisation 0.809 27.10 0.226 29MB (×25.7) 0.840 23.57 0.188 14MB (×27.6) 0.902 29.63 0.249 18MB (×34.8)

A B Ours Error Image Baseline

Fig. 5. From Left to Right: Primitive Reduction only (A), Primitive Reduction and Adaptive SH (B), full method,
error image between ours and baseline, and the baseline (original 3DGS). We show the scenes: Bicycle from
MipNeRF360, Playroom from Deep Blending, and Truck from Tanks&Temples.

This makes 3DGS representations more practical for applications, by making streaming assets
through the web faster and loading them quicker. Our modifications incur a virtually imperceptible
degradation in visual quality, especially for smaller displays. In Fig. 5, we show the visual effect
2We ran all the tests using the codebase of the original method on Github that shows slightly improved numbers compared
to the published paper; see also Tab. 2 below.

Proc. ACM Comput. Graph. Interact. Tech., Vol. 7, No. 1, Article . Publication date: May 2024.



12 Panagiotis Papantonakis, Georgios Kopanas, Bernhard Kerbl, Alexandre Lanvin, and George Drettakis

of each step for three scenes, one from each tested dataset. We show a test input view to allow
comparison with ground truth. In print, the difference is invisible; the visual quality degradation
is minimal, even when viewed on a computer screen. This is in contrast to other state-of-the-art
real-time methods, where quality differences are more apparent. See Fig. 6 for an illustration.

Ground Truth 3DGS Ours INGP MeRF

Fig. 6. Visual comparison between INGP, MeRF, 3DGS and ours.

We also show screenshots from our WebGL application on a phone in the supplemental video.
The initial loading time for the full 3DGS scene on our local wifi network was 120sec, displaying
at 16FPS, while using our method, the download time is only 5sec and 45FPS; a ×24 speedup in
download time.

6.2 Evaluation
We compare our proposed method to previous solutions. In Tab. 2, we reproduce the results from
the original 3DGS paper and have added four rows: one for the recently published MeRF method,
one for 3DGS* corresponding to the runs with the public codebase (see previous footnote) and Our
full solution, as well as the low- and high-compression variants. We show results for 3DGS-based
methods after 30K training iterations. To illustrate the possible tradeoffs for different target use
cases, we also include two variants with slightly different configurations, achieving different degrees
of compression: "Low" and "High". These variants use parameters 𝜖𝜎 = 0.01, 𝜖𝑐𝑑𝑖𝑠𝑡 = 0.0068 and 𝜖𝜎 =

0.06, 𝜖𝑐𝑑𝑖𝑠𝑡 = 0.054, respectively. Furthermore, the minimum redundancy score to be considered
for culling is set to 2 for the high-compression variant. We see that our proposed method and its
variants are competitive in memory compared to INGP and even MipNerf360, but maintain the
advantages of 3DGS w.r.t. speed and quality, including for training time.
We next perform a set of ablation studies to analyze the effect of our choices on memory and

quality. We investigate the effect of various parameters, in particular culling based solely on opacity
vs. using our redundancy metric and selecting high-scoring candidates either with low opacity
or at random. The results are summarized in Tab. 3. While both opacity culling and redundancy
reduction have comparable effects, they identify and cull different sets of primitives. By combining
the two policies, we get the highest reduction while maintaining robust quality metrics. Tab. 4
quantifies the impact of our quantization from full 32-bit floats to half floats. Again, the impact is
minor when compared to the significant reduction in required file size.
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Table 2. Quantitative comparison of relevant methods; the first part of the table is taken from Table 1 of the
3DGS publication. Results are computed over three representative datasets. Our method achieves the best
compromise between size, speed, and quality. M-NeRF360 is consistently the smallest but trains for days and
needs minutes to render, while INGP has significantly lower quality and rendering speed, for only a marginal
gain in storage. Red is the best method, then orange, then yellow; the same color code is used for all tables.

Dataset Mip-NeRF360 Tanks&Temples
Method/Metric 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train FPS (Time) Mem 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train FPS (Time) Mem
Plenoxels 0.626 23.08 0.463 25m49s 6.79 (147ms) 2.1GB 0.719 21.08 0.379 25m5s 13.0 (77ms) 2.3GB
INGP 0.671 25.30 0.371 5m37s 11.7 (85ms) 13MB 0.723 21.72 0.330 5m26s 17.1 (58ms) 13MB
M-NeRF360 0.792 27.69 0.237 48h 0.06 (16.7s) 8.6MB 0.759 22.22 0.257 48h 0.14 (7.1s) 8.6MB
MeRF 0.722 25.24 0.311 - 162 (6.1ms) 162MB - - - - - -
3DGS 0.815 27.21 0.214 41m33s 134 (7.5ms) 734MB 0.841 23.14 0.183 26m54s 154 (6.5ms) 411MB
3DGS* 0.813 27.42 0.217 31m16s 178 (5.6ms) 744MB 0.844 23.66 0.178 17m47s 227 (4.4ms) 412MB
Ours 0.809 27.10 0.226 25m27s 284 (3.5ms) 29MB 0.840 23.57 0.188 14m0s 433 (2.3ms) 14MB
Low 0.811 27.22 0.224 25m22s 295 (3.4ms) 46MB 0.841 23.64 0.186 14m4s 436 (2.3ms) 21MB
High 0.806 27.02 0.230 25m7s 298 (3.3ms) 23MB 0.836 23.28 0.192 13m41s 468 (2.1ms) 10MB

Deep Blending
Method/Metric 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train FPS (Time) Mem
Plenoxels 0.795 23.06 0.510 27m49s 11.2 (89ms) 2.7GB
INGP 0.797 23.62 0.423 6m31s 3.26 (307ms) 13MB
M-NeRF360 0.901 29.40 0.245 48h 0.09 (11.1s) 8.6MB
MeRF - - - - - -
3DGS 0.903 29.41 0.243 36m2s 137 (7.3ms) 676MB
3DGS* 0.899 29.47 0.247 28m2s 201 (5ms) 630MB
Ours 0.902 29.63 0.249 22m4s 360 (2.8ms) 18MB
Low 0.903 29.74 0.248 21m59s 371 (2.7ms) 35MB
High 0.902 29.56 0.251 21m31s 406 (2.5ms) 13MB

Table 3. Ablation on primitive culling approaches. We evaluate the effectiveness of our culling strategy
against simpler baselines. First, we evaluate a straightforward culling approach that culls points with the
lowest opacity across the scene (Opacity). Second, we compute candidates for pruning based on our spatial
redundancy score (see Sec. 4.1) and whose opacity is in the lowest 50% (Redundancy). Third, we compute the
same candidates but prune the 50% of the points at random (Redundancy Random) and finally, we evaluate
our full method that combines Opacity (1st row) and Redundancy (2nd row). On average, the combination of
the two methods achieves 9% higher reduction of points than the best-performing other method.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method/Metric 𝑃𝑆𝑁𝑅↑ #Prim (%Base) 𝑃𝑆𝑁𝑅↑ #Prim (%Base) 𝑃𝑆𝑁𝑅↑ #Prim (%Base)

Opacity 27.16 1.64M (48%) 23.52 0.93M (50%) 29.59 1.37M (48%)
Redundancy 27.16 1.88M (56%) 23.51 0.85M (50%) 29.57 1.30M (45%)
Redundancy Random 27.16 1.91M (57%) 23.55 0.87M (51%) 29.63 1.33M (46%)
Ours 27.10 1.46M (43%) 23.57 0.68M (39%) 29.63 1.01M (35%)

Table 4. We show the effect of half-precision floats on the PSNR, Memory, and Position memory footprint
fraction of total model memory. The drop in quality is limited to 0.07 dB, while the memory reduction is
increased by at least 20%

Dataset Mip-NeRF360 Tanks&Temples Deep Blending
Method/Metric 𝑃𝑆𝑁𝑅↑ Mem (× Gain) Pos % 𝑃𝑆𝑁𝑅↑ Mem (× Gain) Pos % 𝑃𝑆𝑁𝑅↑ Mem (× Gain) Pos %

Baseline 27.42 744MB (×1.0) 5% 23.66 412MB (×1.0) 5% 29.47 630MB (×1.0) 5%
K-means 27.17 38MB (×20.0) 43% 23.60 18MB (×21.7) 41% 29.65 24MB (×26.5) 47%
+Half Floats 27.10 29MB (×25.7) 28% 23.57 14MB (×27.6) 26% 29.63 18MB (×34.8) 31%

In the Appendix, we provide additional comparisons with concurrent, unpublished work that
also address compact 3DGS representation. Comparing with reported metrics for the (as of yet
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unpublished) techniques, we find that our method provides a superior quality/storage tradeoff. We
achieve the highest compression rates across all datasets with negligible differences in quality. We
often achieve higher compression rates and higher PSNR scores than the best competing methods
at the same time. This is due to the fact that our compression uses both an effective quantization
and an effective pruning technique of unused elements in its representation.

7 CONCLUSION
In this paper, we have presented a complete and efficient memory reduction method for 3DGS. We
achieve this by introducing a resolution-aware primitive reduction method, reducing the number of
primitives by half, an adaptive adjustment method to choose the appropriate number of SH bands
required for each primitive, and a codebook-based quantization method.
Our method results in a ×27 reduction in memory with a ×1.7 increase in rendering speed. We

demonstrate our results in the context of a streaming setup with a WebGL implementation for
rendering, reducing download time 20-30 times and increasing rendering speed approximately 3
times. Ours is the first such streaming/mobile 3DGS solution that preserves high visual quality. Our
memory reduction removes one significant limitation of 3DGS; Ours is thus the most competitive
NVS method for all three criteria: speed, quality, and memory consumption.
In future work, it would be interesting to investigate how to further reduce the number of

primitives required, and more importantly avoid the over-densification in the first place. Simple
initial tests have shown that this is a very hard problem; one possible direction would be the use of
data-driven priors, for example, supervision on depth [Chung et al. 2023].
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APPENDIX
In this section, we compare our full method and our low compression variant to several concurrent
methods that are unpublished preprints in Tab. 5 and 6. We report two tables to ensure that all
results are presented using exactly the same datasets. The authors of Compact3D [Navaneet et al.
2023] only report an average size across the three datasets of 54MB. For comparison, the relevant
number for our full method and low compression variant is 26MB and 41MB, respectively. While
Compressed3D [Niedermayr et al. 2023] achieves impressive compression rates on disk, these do not
directly map to VRAM consumption during rendering, since their use of the DEFLATE algorithms
accounts for a factor of ≈ 2×.

Table 5. Comparisons to unpublished concurrent methods (preprints). The results shown here are those that
include the full set of Mip-NeRF360 scenes, i.e., the two scenes with licensing issues, treehill and flowers.

Dataset Mip-NeRF360 Deep Blending
Method/Metric 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train Mem 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train Mem

Ours 0.809 27.10 0.226 25m27s 29MB 0.902 29.63 0.249 22m4s 18MB
Low 0.811 27.22 0.224 25m22s 46MB 0.903 29.74 0.248 21m59s 35MB
EAGLES [Girish et al. 2023] 0.808 27.16 0.238 19m57s 68MB 0.910 29.91 0.245 17m24s 62MB
Compact3D [Navaneet et al. 2023] 0.808 27.16 0.228 - - 0.903 29.75 0.247 - -
Compressed3D [Niedermayr et al. 2023] 0.801 26.98 0.238 - 29MB 0.898 29.38 0.253 - 25MB
Compact3DGS [Lee et al. 2023] 0.798 27.08 0.247 33m6s 48MB 0.901 29.79 0.258 27m33s 43MB
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Table 6. Comparisons to unpublished concurrent methods (preprints). The results shown here exclude the
two scenes with licensing issues, treehill and flowers.

Dataset Mip-NeRF360 No Hidden Tanks&Temples
Method/Metric 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train Mem 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑ 𝐿𝑃𝐼𝑃𝑆↓ Train Mem

Ours 0.864 28.58 0.193 26m0s 27MB 0.840 23.57 0.188 14m0s 14MB
Low 0.866 28.73 0.190 25m52s 43MB 0.841 23.64 0.186 14m4s 21MB
EAGLES [Girish et al. 2023] 0.866 28.69 0.200 20m18s 67MB 0.835 23.41 0.200 9m48s 34MB
Compact3D [Navaneet et al. 2023] - - - - - 0.840 23.47 0.188 - -
Compressed3D [Niedermayr et al. 2023] 0.857 28.48 0.205 - 28MB 0.832 23.32 0.194 - 17MB
Compact3DGS [Lee et al. 2023] 0.856 28.60 0.209 33m1s 46MB 0.832 23.31 0.202 18m19s 39MB
LightGaussian [Fan et al. 2023] 0.858 28.46 0.210 - 42MB 0.807 22.83 0.242 - 22MB

Table 7. Per-scene results for Mip-NeRF 360 dataset.

Baseline Ours
Scene 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train #Prim Mem FPS (Time) 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train #Prim Mem FPS (Time)

bicycle 0.763 25.10 0.212 41m18s 6.05M 1362MB 115 (8.7ms) 0.761 25.06 0.221 30m2s 2.41M 48MB 260 (3.8ms)
flowers 0.604 21.44 0.338 28m39s 3.63M 816MB 205 (4.9ms) 0.598 21.44 0.346 23m6s 1.61M 35MB 353 (2.8ms)
garden 0.863 27.28 0.108 43m2s 5.77M 1298MB 127 (7.9ms) 0.854 27.03 0.119 31m52s 2.36M 47MB 245 (4.1ms)
stump 0.771 26.60 0.216 33m12s 4.75M 1068MB 216 (4.6ms) 0.776 26.68 0.219 26m58s 2.50M 48MB 321 (3.1ms)
treehill 0.633 22.44 0.327 29m4s 3.80M 854MB 192 (5.2ms) 0.631 22.44 0.337 23m55s 1.81M 37MB 286 (3.5ms)
room 0.917 31.44 0.221 26m14s 1.53M 345MB 179 (5.6ms) 0.913 30.95 0.228 22m38s 0.56M 10MB 272 (3.7ms)
counter 0.906 28.98 0.202 25m32s 1.20M 269MB 174 (5.7ms) 0.898 28.54 0.213 22m57s 0.50M 11MB 256 (3.9ms)
kitchen 0.925 31.27 0.127 31m32s 1.79M 403MB 145 (6.9ms) 0.917 30.52 0.136 27m20s 0.84M 18MB 224 (4.5ms)
bonsai 0.940 32.21 0.206 22m53s 1.25M 281MB 254 (3.9ms) 0.932 31.26 0.216 20m18s 0.52M 10MB 341 (2.9ms)

Table 8. Per-scene results for Tanks&Temples dataset.

Baseline Ours
Scene 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train #Prim Mem FPS (Time) 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train #Prim Mem FPS (Time)

truck 0.878 25.41 0.148 21m19s 2.58M 580MB 214 (4.7ms) 0.874 25.22 0.155 16m11s 0.85M 16MB 418 (2.4ms)
train 0.810 21.91 0.208 14m16s 1.08M 243MB 240 (4.2ms) 0.805 21.93 0.222 11m50s 0.50M 12MB 449 (2.2ms)

Table 9. Per-scene results for DeepBlending dataset.

Baseline Ours
Scene 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train #Prim Mem FPS (Time) 𝑆𝑆𝐼𝑀↑ 𝑃𝑆𝑁𝑅↑𝐿𝑃𝐼𝑃𝑆↓ Train #Prim Mem FPS (Time)

drjohnson 0.898 29.03 0.247 31m22s 3.27M 736MB 171 (5.8ms) 0.901 29.21 0.249 24m38s 1.25M 23MB 335 (3ms)
playroom 0.900 29.90 0.247 24m43s 2.33M 523MB 232 (4.3ms) 0.904 30.05 0.249 19m30s 0.77M 13MB 385 (2.6ms)

We find that our low-compression variant already yields smaller file sizes than the most compact
competitors, but maintains image quality closest to 3DGS across the board. We note that for Deep
Blending, more invasive regularization in some other methods can improve the metrics over 3DGS.
Our proposed variant still achieves competitive quality, while requiring even less storage, resulting
in significantly smaller files and an extremely favorable file size/quality tradeoff.

Finally, we provide per-scene results for Mip-NeRF360 Tab. 7, Tanks&Temples Tab. 8 and Deep-
Blending Tab. 9 datasets.
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