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Fig. 1. Our Gaussian-based radiance-field method allows interactive editing of path traced reflections, with consistent updates. We develop our proof-of-

concept method in synthetic scenes with known ground truth inputs and show its extension to a real scene with network predicted inputs.

Radiance fields such as 3D Gaussian Splatting allow real-time rendering of

scenes captured from photos. They also reconstruct most specular reflec-

tions with high visual quality, but typically model them with “fake” reflected

geometry, using primitives behind the reflector. Our goal is to correctly

reconstruct the reflector and the reflected objects such as to make specular

reflections editable; we present a proof of concept which exploits promising

learning-based methods to extract diffuse and specular buffers from photos,

as well as geometry and BRDF buffers. Our method builds on three key

components. First, by using diffuse/specular buffers of input training views,

we optimize a diffuse version of the scene and use path tracing to efficiently

generate physically-based specular reflections. Second, we present a spe-

cialized training method that allows this process to converge. Finally, we

present a fast ray tracing algorithm for 3D Gaussian primitives that en-

ables efficient multi-bounce reflections. Our method reconstructs reflectors

and reflected objects—including those not seen in the input images—in a

unique scene representation. Our solution allows real-time, consistent edit-

ing of captured scenes with specular reflections, including multi-bounce

effects, changing roughness etc. We mainly show results using ground truth

buffers from synthetic scenes, and also preliminary results in real scenes
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with currently imperfect learning-based buffers. Code and data are available
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1 INTRODUCTION

Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] and 3D

Gaussian Splatting (3DGS) [Kerbl et al. 2023] allow high-quality

novel-view synthesis with only posed photographs as input. One of

their major strengths is that they render view-dependent effects such

as low- to medium-frequency specular reflections with high visual

quality. However, the representation of reflections is entangled with

the geometry: they are baked into a directional radiance component,

and often are actually “fake mirror geometry” situated behind the re-

flective surfaces [Meng et al. 2024; Zhang et al. 2024]. This precludes

consistent editing of scenes with reflections, i.e., where reflections

will be correctly updated when changing geometry or materials. We

propose the first method that allows interactive reflection-consistent

editing of radiance fields (Fig. 1) by using distinct processes to re-

construct each of the diffuse and reflective components of the scene.

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.

HTTPS://ORCID.ORG/0009-0001-5806-5136
HTTPS://ORCID.ORG/0009-0003-4400-0862
HTTPS://ORCID.ORG/0000-0002-6583-2364
HTTPS://ORCID.ORG/0000-0002-9254-4819
https://orcid.org/0009-0001-5806-5136
https://orcid.org/0009-0003-4400-0862
https://orcid.org/0000-0002-6583-2364
https://orcid.org/0000-0002-9254-4819
https://orcid.org/0000-0002-9254-4819
https://doi.org/10.1145/3757377.3763971
https://repo-sam.inria.fr/nerphys/editable-gaussian-reflections/
https://doi.org/10.1145/3757377.3763971


2 • Yohan Poirier-Ginter, Jeffrey Hu, Jean-François Lalonde, and George Drettakis

Novel View Diffuse & Specular RendersTrain View Layers

Gaussian

Path Tracing

SE
PA

RA
TI

O
N

G
EO

M
ET

RY
BR

D
F +

Fig. 2. Our method takes as input several buffers for every training view (left), and reconstructs a unique gaussian-based scene where reflections in novel

views are computed with cached diffuse (middle) and physics-based path tracing (right). This figure shows ground truth input buffers from a synthetic scene,

from top to bottom: separated targets (diffuse and non-diffuse), BRDF parameters (base reflectance and roughness), and geometry (depth and normals).

Our method also allows reconstruction of reflected objects unseen

in the input images.

In the original versions of NeRF and 3DGS, a directional radi-

ance representation is modeled by a Multi-Layer Perceptron (MLP)

and Spherical Harmonics (SH) respectively. However, these low-

frequency representations cannot represent reflections accurately,

and thus the optimization favors the creation of “fake mirror geom-

etry” (see video). Several improvements exist for better reflection

in NeRFs, e.g., by changing parameterizations or encodings [Ma

et al. 2024; Verbin et al. 2022]. Similarly, several methods attempt

to improve reflections in 3DGS, often for distant lighting [Jiang

et al. 2024; Ye et al. 2024]. These methods still suffer from the en-

tangled reflection representation. Recently, NeRFcasting [Verbin

et al. 2024] and EnvGS [Xie et al. 2025] use ray tracing but require

a separate scene representation for reflections to allow stable opti-

mization. Representing reflectors and reflected objects as separate

scenes prevents consistent editing of the radiance field.

To address these problems, our key intuition is to have a unique

scene with two distinct—but concurrent—optimizations: one for the

diffuse, and one for the specular components of the scene, supervised

on diffuse and specular input buffers respectively. In this paper, we

use the term specular to mean all non-diffuse reflections, from rough

glossy to pure mirror. The diffuse buffer captures diffuse global illu-

mination, including shadows and interreflections, while the specular

buffer captures mirror and glossy reflections. We reconstruct the

diffuse component of the scene using ray traced Gaussian primitives

and compute specular reflections with path tracing while treating

the diffuse component similarly to an irradiance cache [Ward et al.

1988]. Our reflections support surfaces of different roughness, and

multi-bounce effects computed in a physically-based manner, i.e.,

exclusively with path tracing. They also allow interactive scene

editing with physically-correct reflections. Note that transparency

is more complicated, since buffers would have to deal with two

rays—reflected and refracted; we thus leave it as future work.

First, we present a proof-of-concept of our method on synthetic

scenes, where rendered images are used in the place of photos, and

ground truth values are used for all buffers (diffuse, specular, mate-

rials etc.). This solution shows we can duplicate a reflective object

in a scene, and all real, captured objects will be correctly reflected in

the duplicated object interactively, even with multiple bounces (see

Fig. 1). Second, we present an editable inverse rendering pipeline

on synthetic and real images using buffers predicted by neural

networks, albeit with lower quality for novel-view synthesis. In par-

ticular, recent intrinsic image decomposition methods can extract

the required buffers from photographs [Roberts et al. 2021; Zeng

et al. 2024], by training on synthetic data where light transport is

separated into diffuse and reflective (or non-diffuse) components at

the first bounce. That being said, while these methods are improving

at outstanding rates, the current quality of predicted buffers from

existing methods (e.g., [Ke et al. 2024; Liang et al. 2025a; Zeng et al.

2024]) is only partially sufficient for our goals. We thus focus mainly

on our proof-of-concept using synthetic data with perfect buffers

to develop our method, and present preliminary results for scenes

processed with the best possible existing learning-based methods

at the time of writing.

In short, our method leverages intrinsic decomposition to sepa-

rately reconstruct the diffuse and reflected components of a scene

(see Fig. 2) to make editable specular reflections possible (see video).

We optimize a unique representation of the scene, i.e., both the reflec-
tors and reflected objects are represented with the same Gaussian

primitives, by carefully designing separate losses and a training

schedule. This unique representation makes it possible to recon-

struct objects only viewed indirectly through specular reflections, as

shown in Fig. 3. Finally, we present an efficient hardware-accelerated

Gaussian primitive ray tracer, which uses efficient spatial data struc-

tures and other techniques to optimize Gaussian primitive traversal.

In summary our contributions are:

• A reconstruction method for radiance fields with distinct

optimization for diffuse and specular components, using path

tracing for the latter.

• An efficient and accurate training method that reconstructs

the diffuse and the specular components of the scene in a

single representation.

• An efficient ray tracer for Gaussian primitives, that is fast

enough to enable treatment of multiple bounces with minimal

computational overhead.
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Fig. 3. We showcase reconstruction of objects viewed indirectly by recovering the cover of a book only visible indirectly through a mirror in the training views

(left). From these views alone, our method accurately recovers the cover (right), unlike standard methods like 3DGS (middle). Note that in these results, our

method uses ground truth input buffers.

Given our advantage of additional input buffers, and notably dif-

fuse/specular image decomposition, we achieve state-of-the-art

(SOTA) diffuse/specular disentanglement for novel-view synthesis,

even though overall visual quality is lower that previous methods.

Our disentanglement allows real-time reflection and material edit-

ing in both the proof-of-concept case with ground truth buffers and

for real scenes. For the latter we present an experimental neural net-

work that provides the buffers we require. While quality measured

on our synthetic scenes given SOTA networks is low, it is sufficient

for realistic, interactive scene manipulation in certain real scenes,

showing the potential of the approach with future, better quality

learning-based buffer predictions. Code and data are available at:

https://repo-sam.inria.fr/nerphys/editable-gaussian-reflections/.

2 RELATED WORK

Our goal is to provide physically-based specular reflections for

radiance fields that allow consistent real-time editing and recon-

struction of the unseen reflected objects. We review most closely

related methods.

Reflections in NeRF. Neural radiance fields, or NeRF [Mildenhall

et al. 2020], learn an implicit scene representation, parametrized

with a multi-layer perceptron (MLP), from multi-view posed images.

NeRF typically represents specular reflections with a combination of

view-dependent color in the MLP and “fake geometry” representing

the reflected objects behind the reflector. Ref-NeRF [Verbin et al.

2022] improve on this by using the reflected view direction, NeR-

FReN [Guo et al. 2022] model the transmitted and reflected scene

separately, similarly for MS-NeRF [Yin et al. 2025], and Mirror-

NeRF [Zeng et al. 2023] assume planar mirrors. Others [Liang et al.

2023a; Liu et al. 2023; Wang et al. 2024] exploit signed distance

fields [Li et al. 2023; Wang et al. 2021] to obtain more accurate scene

geometries, or modify the directional encoding [Ma et al. 2024] to

better capture the spatially-varying nature of near-field lighting.

NeRF-casting [Verbin et al. 2024] integrates reflection features along

reflection directions. However, the need for multiple MLP queries for

each ray and the creation of a separate version of the scene makes

it both impractical for real-time rendering and reflection-consistent

scene editing.

Reflections in 3D Gaussian Splatting. 3DGS [Kerbl et al. 2023] in-
troduces a primitive-based representation for radiance fields, and

uses efficient rasterization to render Gaussian primitives, achieving

fast training and real-time rendering. 3DGS-based approaches model

reflections with a combination of view-dependent spherical harmon-

ics (SH) and the creation of “fake geometry” representing reflected

objects behind the reflected surface. More recent works [Jiang et al.

2024; Ye et al. 2024], enhance reflection modeling by incorporating

additional environment maps. However, these methods focus only

on distant lighting. 3iGS [Tang and Cham 2024] integrates an il-

lumination field through tensorial factorization (as in [Chen et al.

2022; Jin et al. 2023]) and renders the final reflections with a neural

renderer, but is constrained to bounded scenes. Ref-GS [Zhang et al.

2025] models near-field reflection using a tensorial factorization

within a 2DGS framework [Huang et al. 2024], and models far-field

illumination with a spherical feature grid. None of these approaches

overcome the basic limitation of representing specular reflections

with “fake geometry”, making them unsuitable for consistent editing.

Some approaches also assume knowledge of planar mirrors [Liu et al.

2024; Meng et al. 2024]. Most approaches are efficient for objects,

but were not tested on full scenes [Lai et al. 2025]. A predecessor of

3DGS [Kopanas et al. 2022] models reflections with a separate point

cloud rendered with an MLP and shows reflection editing, which is

not truly consistent.

Ray Tracing with Gaussian Primitives. 3D Gaussian Ray Tracing

(3DGRT) [Moenne-Loccoz et al. 2024] renders a 3D Gaussian rep-

resentation using ray tracing instead of rasterization. They build

a bounding volume hierarchy and cast a ray for each pixel using

high-performance GPU ray tracing hardware [Parker et al. 2010].

3DGUT also showed that reflection rays are possible in a splat-

ting framework [Wu et al. 2025]. A similar proposal is made in

RaySplats [Byrski et al. 2025a], more recently extended in REdiS-

plats [Byrski et al. 2025b] and in RayGauss [Blanc et al. 2025]. After

training, 3DGRT shows they can render secondary ray effects such

as reflections. Critically, only mesh-Gaussian reflections can be han-

dled by their framework; in contrast, we model Gaussian-Gaussian

reflections during training. We also improve over 3DGRT with

several performance enhancements (see Sec. 3.3). Inter-Reflective
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Fig. 4. Radiance fields, recovered for example with EnvGS [Xie et al. 2025]

(left), often rely on duplicate geometry to represent specular reflections;

notice the replicas of the environment placed within the chrome spheres

(top-left). Our method (middle) represents reflections with physically-based

light transport only, closely matching ground truth novel views (right). Note

that in these results, our method uses ground truth input buffers.

Gaussian Splatting (IRGS) [Gu et al. 2024] attempts to address inter-

reflection modeling by extending the 2DGS framework with a dif-

ferentiable ray tracing approach. EnvGS [Xie et al. 2025] trains two

versions of the scene: a base scene (with rasterization), and “environ-

ment Gaussians” (with raytracing) which represents scene elements

only visible through reflections. While this approach improves the

separation between the diffuse and specular component, there are

still residual reflections in the diffuse buffer (as we show in Sec. 4)

and the lack of a BRDF model makes it unsuitable for editing. In

contrast, we handle inter-reflections, and also reconstruct scene

elements only visible in specular reflections, thanks to our unique
scene representation. This allows consistent interactive reflection

editing.

Inverse Rendering and Relighting. Scene editing could be achieved
using full inverse rendering [Li et al. 2018; Marschner 1998; Nimier-

David et al. 2019]. However, full physically-based inverse render-

ing is ill-posed [Kouros et al. 2024] and expensive [Li et al. 2018;

Nimier-David et al. 2019; Srinivasan et al. 2021; Zhang et al. 2021],

and currently cannot handle complex scenes [Shi et al. 2025]. GS-

IR [Liang et al. 2023b] leverages 3DGS to accelerate it. Relighting

techniques [Bi et al. 2024; Gao et al. 2024; Kuang et al. 2024; Poirier-

Ginter et al. 2024] allow the lighting to be edited, and are orthogonal
to the kind of edits we show (moving reflective objects and changing

materials). Combining them is interesting future work.

3 METHOD

At a high level, our method starts with BRDF parameters from in-

put views, attaches these parameters as well as depth and normals

to diffuse Gaussians using 3DGS-like optimization, and during op-

timization computes specular reflections by simulating full light

transport of the specular component. At each intersection, accumu-

lated parameters are used to perform proper ray tracing.

3.1 Diffuse/Specular Separation for Physics-Based

Reflections

By computing and supervising diffuse and specular reflections sep-

arately, our method makes it much harder for the optimization to

“cheat” and create “fake” geometry to represent reflections.

To achieve this we make a key design choice by having separate

supervision signals: one for the diffuse and one for the specular

component—both are computed with ray tracing. However, we cre-

ate a unique scene representation for both. The Gaussian primitives

in this reconstruction will represent all geometry visible in the input

views, but also the reflected objects at coherent positions in space

(see Fig. 13).

The RGB colors in the input images are the result of (real-world)

physical light transport, expressed by the rendering equation:

𝐿𝑜 (𝒙,𝝎𝑜 ) = 𝐿𝑒 (𝒙,𝝎𝑜 ) +
∫
Ω
𝐿𝑖 (𝒙,𝝎𝑖 ) 𝑓 (𝝎𝑖 , 𝒏,𝝎𝑜 ) cos𝜃𝑖 𝑑𝝎𝑖 , (1)

where 𝐿𝑜 , 𝐿𝑒 , 𝐿𝑖 are the outgoing, emitted, incoming radiance re-

spectively, 𝝎𝑖 and 𝝎𝑜 are the incoming and outgoing directions, 𝒏
is the surface normal at point 𝒙 , cos𝜃𝑖 = 𝝎𝑖 · 𝒏, and 𝑓 is the BRDF.
We use the approximation that 𝑓 = 𝑓𝑑 + 𝑓𝑠 with 𝑓𝑑 and 𝑓𝑠 the diffuse

and specular components. Ignoring the emissive term, our method

approximates light transport by the sum of two terms:

𝐿𝑜 (𝒙,𝝎𝑜 ) =
∫
Ω
𝐿𝑖 (𝒙,𝝎𝑖 ) 𝑓𝑑 (𝝎𝑖 , 𝒏) cos𝜃𝑖 𝑑𝝎𝑖+∫

Ω
𝐿𝑖 (𝒙,𝝎𝑖 ) 𝑓𝑠 (𝝎𝑖 , 𝒏, 𝜔𝑜 ) cos𝜃𝑖 𝑑𝝎𝑖 .

(2)

Using Heckberts light path notation [Heckbert 1990], the first term

computes all L((D|S)∗)DE paths, where L are the lights, D the

diffuse vertices in a path, S the specular vertices and E is the eye or

camera, while the second term computes all L((D|S)∗)SE paths.

When path tracing scenes, each term is computed with the same

paths, but at the first intersection the first (diffuse) term is evaluated

using only 𝑓𝑑 , and the second (specular) term using only 𝑓𝑠 . We

reconstruct the diffuse component by supervising on the diffuse

buffer, resulting in a “cached” version of diffuse lighting 𝐿̂𝑑 which

we use like an irradiance cache already multiplied with albedo i.e.

𝐿𝑜 (𝒙,𝝎𝑜 ) = 𝐿̂𝑑 +
∫
Ω
𝐿𝑖 (𝒙,𝝎𝑖 ) 𝑓𝑟 (𝝎𝑖 , 𝒏, 𝜔𝑜 ) cos𝜃𝑖 𝑑𝝎𝑖 . (3)

We thus avoid a large part of the full path tracing costs, namely the

first term in Eq. (2). This reconstruction contains “baked” shadows

and diffuse color bleeding. Other quantities (depths, normals, ma-

terial properties) are also supervised with corresponding buffers,

while reflections (second term in Eq. (2)) are computed with path

tracing. Diffuse and specular components are shown in Figs. 2 and 4.

To develop our approach and evaluate it quantitatively, we first

use synthetic scenes, rendering RGB images that serve the same

purpose as real photos for radiance field reconstruction. We render

exact image buffers per input view for diffuse and specular com-

ponent of Eq. (2). We also render buffers with all depths, normals,

BRDF coefficients per pixel that are attached to Gaussians, and then

used to perform proper ray traced reflections. For real images, we

use a neural network trained on such path traced images (e.g., using

the Hypersim [Roberts et al. 2021] and InteriorVerse [Zhu et al.
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2022] datasets) to extract diffuse and specular buffers, and buffers

for the other parameters (Sec. 3.4).

We use the Cook-Torrance BRDF [Cook and Torrance 1982] and

specifically, a subset of the Disney BRDF formulation [Burley 2012].

The parameters of this model are the roughness 𝜌 and the base

reflectance or 𝐹0 which is defined based on the metalness, specular

and color parameters [Burley 2012].

Reconstructing the Diffuse Component. We reconstruct the diffuse

component using a single diffuse RGB value per Gaussian primitive

instead of spherical harmonics. This step could use the standard

3DGS splatting pipeline, but we prefer to use our ray tracing so-

lution throughout to avoid the discrepancy induced by the affine

approximation of splatting [Huang et al. 2025], ensuring a single

consistent solution. Note that, like 3DGRT, our scenes are incom-

patible with 3DGS since we use per-pixel sorting to avoid popping

artifacts.

The diffuse component is supervised directly with the diffuse

buffer, and reconstructs a version of the scene with diffuse global

illumination and shadows. For the other quantities (normals, rough-

ness and base reflectance), we attach values to each Gaussian primi-

tive, and optimize with supervision from the per-input-view buffers.

We also optimize the expected termination depth [Kerbl et al. 2023]

with the depth buffers.

Max Path Length 1 Max Path Length 2 Max Path Length 3

used for optimization

Max Path Length 4

Fig. 5. We support multi-bounce reflections during optimization. The num-

ber of bounces can be adjusted, trading off performance vs. accuracy.

Ray Traced Physics-Based Specular Reflections for Radiance Fields.
We compute the L((D|S)∗)SE paths with path tracing of the

Gaussian primitives and cached diffuse. Each primitive is initialized

with a base reflectance value 𝐹0 initialized at 0.04 and with rough-

ness and normal values initialized at 0. Each ray traverses Gaussians

while accumulating values with alpha-blending as in 3DGS, for all

quantities, including normals, roughness and 𝐹0 values. The accumu-

lated “normal” value is then normalized to unit length. We compute

the intersection at the expected termination depth and use accu-

mulated normal, roughness and 𝐹0 values to importance sample a

random reflection ray with the Cook-Torrance BRDF. Our approach

supports multiple ray bounces natively, see Fig. 5. In practice, we

set the max path length to 3, resulting in good performance at the

cost of some minor inaccuracies (i.e. the black spots in reflections

in Fig. 1). During these bounces we query the diffuse component

representation for color, which is the (diffuse component of) radi-

ance extracted from the input images (i.e., real-world lighting for

photos). We train at 1 sample per pixel, but for offline rendering

use 128 samples and then apply the OptiX denoiser (see Fig. 6). The

specular component is supervised with the specular buffer provided

as input.

1 Sample Per Pixel Prediction 32 Samples Denoised Ground Truth

Fig. 6. We support physically-based reflections with different levels of rough-

ness in the same scene. At inference, we sample several samples per pixel

(column 1) and denoise with the OptiX denoiser (column 2).

Finally, we adapt dense initialization [Kotovenko et al. 2025]

instead of densification to further accelerate convergence; we found

ray tracing effective at handling the large number of small Gaussians

that dense initialization provides. We do not densify further and

aim for a number of gaussians comparable with the baselines; for

details refer to Supplemental.

3.2 Optimizing a Unique Scene for Radiance Field

Reflections

Optimizing a representation that uses Gaussian primitive ray trac-

ing is hard: previous approaches [Verbin et al. 2024; Xie et al. 2025]

showed that flowing gradients naively through reflections damages

geometric reconstruction. This can create a feedback effect where

bad geometry skews reflection rays, leading to more damage. These

previous approaches side-step this problem by optimizing two sepa-

rate radiance fields, one for the primary scene and one for reflections

(e.g., [Xie et al. 2025]). However, such a choice precludes scene edit-

ing with multi-bounce reflections, and can hinder reconstruction

of reflected objects unseen in the input views. We overcome this

optimization instability and reconstruct a unique scene.

Diffuse/specular separation resolves the ambiguity between tex-

ture and reflected objects, letting us maintain a unique scene while

keeping training stable. Our training proceeds with two different

losses: one for diffuse and one for specular components. It also

recovers normals and BRDF directly through input buffer supervi-

sion and not via inverse rendering: we do not differentiate normals

and BRDF w.r.t. the RGB images, ensuring that the scene remains

well-formed even with gradients flowing through reflections.

We cast a path through each pixel, and use the first segment of the

path to query diffuse global illumination (see Sec. 3.1), represented

by the diffuse component reconstruction. We denote this quantity 𝑑

and we supervise with the value 𝑑∗ in the diffuse buffer:

L𝑑 = 𝜆𝑑 ℓ ( ˆ𝑑,𝑑∗) , (4)

where (̂ ) denotes the accumulated value, (∗) the corresponding

ground truth value from the buffers, and ℓ the L1 loss. We then

continue the path using the specular BRDF component 𝑓𝑠 and match

the contribution of the remaining path segments 𝑐𝑖 , 𝑖 = 2 . . . 𝐾 to

the specular buffer 𝑠:

L𝑟 = 𝜆𝑟 ℓ (
𝐾∑︁
𝑖=2

𝑐𝑖 , 𝑠
∗) , (5)

where 𝐾 is the maximum path length. To this we add a loss match-

ing the accumulated values of other attached properties namely

depth 𝑡 , normal 𝑛̂, roughness 𝜌 , and base reflectance 𝐹0 to their
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corresponding target buffers:

L𝑎 = 𝜆𝑡 ℓ (𝑡, 𝑡∗) + 𝜆𝑛 ℓ (𝑛̂, 𝑛∗) + 𝜆𝜌 ℓ (𝜌, 𝜌∗) + 𝜆𝐹0 ℓ (𝐹0, 𝐹
∗
0
) (6)

This loss is only applied to the first path segment since these buffers

are only known for this segment. Our final objective is:

min

𝜃,𝑑
E [L𝑑 + L𝑟 ] + min

𝜃,𝑡,𝑛,𝜌,𝐹0
E[L𝑎] , (7)

where 𝜃 contains the position, rotation, scale and alpha parameters

for each Gaussian. Note that both subobjectives are optimized at

the same time. We use values 𝜆𝑑 = 5.0, 𝜆𝑠 = 3.0, 𝜆𝑡 = 2.5, 𝜆𝑛 = 2.5,

𝜆𝜌 = 1.0 and 𝜆𝐹0 = 1.0. We compute all losses in linear space.

Our training schedule starts with a warmup for 750 iterations

with the first ray segment only, which reconstructs a first version

of the diffuse component. We then enable all reflections and add

𝑀 = 75, 000 far-field Gaussians initialized around the scene origin

with positions randomly sampled from a normal distribution with

𝜎 = 4𝑆 truncated at 3𝜎 ; the scene extent 𝑆 is estimated as in 3DGS

by computing the radius of a sphere which bounds the input camera

poses [Kerbl et al. 2023]. As optimization progresses, these primi-

tives provide a (coarse) approximate reconstruction of the reflected

objects in the environment (Fig. 13).

3.3 Efficient Ray Tracer for Multi-Bounce Radiance Field

Reflections

To achieve our goals, we need efficient Gaussian ray tracing, both

for optimization and rendering (“inference”), beyond the speed of

existing methods (Sec. 2). To do this we focus on four components:

1) Using oriented bounding boxes (OBBs) to bound Gaussians 2)

Avoiding multiple Bounding Volume Hierarchy (BVH) traversals, 3)

Fused forward/backward pass and 4) Aggressive truncation. Num-

bers reported below use the configuration employed to compare

with 3DGRT [Moenne-Loccoz et al. 2024] (Supplemental, Sec. 3.3).

Emulated OBB

(Our Method)

Icosahedron 

(Prior Work)

AABB 

(Naïve Solution)

Fig. 7. We encapsulate Gaussians with oriented bounding boxes (OBB)

using instancing with hardware-accelerated OptiX transforms.

Oriented Bounding Boxes. Prior methods [Condor et al. 2025;

Moenne-Loccoz et al. 2024] use an icosahedron mesh to bound Gaus-

sians, allowing fast intersections for rendering, but requiring costly

BVH updates for the 20 triangles assigned to each Gaussian during

optimization. To avoid this overhead, we exploit the hardware accel-

erated capabilities of OptiX, allowing efficient use of OBBs
1
. OptiX

only supports Axis-Aligned Bounding Boxes (AABBs) natively, thus

naively emulating OBBs would still result in slow traversal (Fig. 7).

1
The method of Moenne-Loccoz et al. [2024] describes the icosahedron approach,

however a recent code release associated with the paper also uses OBBs. [Lee et al.

2024] also proposed OBBs but for splatting.

τ0=1.0 τ1=0.5 τ2=0.12 τ3=0.007

?

τ3 < 0.01

Exact Gaussians Approximated Gaussians

approximate color

exact final 
transmittance

τf = 0.0012

Fig. 8. We accelerate integration by approximating Gaussians of low contri-

bution, enabling aggressive transmittance thresholding during optimization.

Instead, we exploit hardware accelerated transforms of AABBs

provided by OptiX, by instancing an AABB in a two-level accel-

eration structure [Wald et al. 2020]. This has the added benefit of

letting us simplify the Gaussian evaluation since we avoid comput-

ing covariance matrices explicitly and we do not invert the Gaussian

transforms ourselves. On the Kitchen scene (Fig. 12), an incremen-

tal BVH update adds a minimal overhead of 9.5%.

Avoiding Multiple BVH Traversals per Ray. Per-pixel sorting a

large number of Gaussian primitives is slow since it requires in-

coherent memory accesses. 3DGRT [Moenne-Loccoz et al. 2024]

resolved this by collecting and sorting the nearest primitives in

small (typically, 16) groups which fit in register memory, requiring

multiple BVH traversals. To avoid this, we perform a single traver-

sal and store all intersected Gaussians into a per-pixel linked-list

(PPLL) [Yang et al. 2010] “replay buffer” which contains Gaussian

id, alpha value, etc. We then loop over this buffer multiple times to

collect, sort, and integrate the nearest 16 Gaussians. While this ap-

proach does increase memory consumption, our experiments show

high-resolution scenes can still be handled on modern cards (e.g.,

RTX4090). Our experiments show this results in speedups of 10–50%

depending on the scene and resolution.

Fused Forward/Backward Pass. To further accelerate optimization,

we use a fused forward/backward pass where each pixel’s backward

pass starts immediately after the forward pass. We use a PPLL to

store data for the backward pass: the intersected Gaussian ids, hit

distances, precomputed alpha values, etc. Our backward pass is

quite fast, a combined forward/backward is 2.23 times slower than

just the forward pass while 3DGS is 3.31 times slower.

Aggressive Primitive Truncation. Since transmittance decays rapid-

ly along a ray, all Gaussians past a certain point have minimal

contribution to the final color. 3DGRT [Moenne-Loccoz et al. 2024]

handled this by reducing the transmittance threshold from 𝜏 = 0.001

to 𝜏 = 0.03 at inference. Doing so during optimization fails since

discarding even seemingly insignificant Gaussians biases gradients

of the others in front, making them to grow to mask the background.

To avoid this instability, we discard farthermost Gaussians, and scale

the gradients of those remaining using an approximation of their

color, similar to [Byrski et al. 2025a; Hahlbohm et al. 2025], see Fig. 8.

See Supplemental for more details.
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Prompt

Input RGB

Prediction Target

SD2
“Diffuse”

“Specular”

“Depth”

“Normals”

“Roughness”

Fig. 9. We fine-tune a pretrained Stable Diffusion 2 network into a one-step

inverse rendering network.

3.4 A Dedicated Network to Infer Disentangled Layers

Recent learning-based methods have made incredible advances in

inferring different intrinsic quantities such as depth, normals or

reflectance properties directly from images [Garcia et al. 2025; Ke

et al. 2024; Li et al. 2025; Liang et al. 2025a; Xi et al. 2024; Zeng et al.

2024]. Many of these methods fine-tune a diffusion model (typically

StableDiffusion2 (SD2) [Rombach et al. 2022]). Marigold [Ke et al.

2024] and RGB↔X [Zeng et al. 2024] require many denoising steps;

more recent work [Garcia et al. 2025; Xu et al. 2025] showed that for

strongly conditioned tasks, a single step model can be equally accu-

rate and cheaper at inference. Additionally, concurrent work [Liang

et al. 2025b] leverages video models to improve quality and temporal

stability; we leave extension to video models as future work, and

base our model on SD2.

Based on these recent results, and since none predict the non-

diffuse buffer needed by our method, we fine-tune SD2 into a single

step model that predicts all the buffers (diffuse, specular, normals,

see Sec. 3.2) and switches between themwith text prompts, using the

approach of RGB↔X [Zeng et al. 2024] (Fig. 9). For training, we use

a mix of the Hypersim [Roberts et al. 2021] and InteriorVerse [Zhu

et al. 2022] datasets and provide as input the RGB image and a

prompt designating the desired buffer. We use a latent mean squared

error (MSE) loss for fast training. Fig. 10 shows that our network

yields plausible predictions of all target buffers.

4 RESULTS AND EVALUATION

We first present results of real-time reflection editing of radiance

fields. Since no previous method can perform such editing, we

present our best-effort evaluation of diffuse/specular disentangle-

ment, and compare our ray-tracer with that of 3DGRT [Moenne-

Loccoz et al. 2024]. Finally, in supplemental we show that we per-

form better than 3DGS for a sparse set of views.

4.1 Real-Time Editing

We show results of real-time editing of radiance field with specu-

lar reflections in the supplemental video and in Figs. 1, 11 and 12.

We can consistently move reconstructed reflectors: reflections are

correctly updated in other objects in the radiance field. Similarly,

we can modify material properties with consistent updates. These

operations are only possible because of our full disentanglement

and multiple bounces we enable. Note however that shadows are
“baked” into the diffuse layer, and are not updated. In Figs. 3 and 13,

we see that our method reconstructs the unseen reflected objects,

with accuracy that is sufficient for specular reflection computation.

Fig. 10. Example network predictions (left) for a given input view (top), and

novel view renderings (right) of the different layers used in our approach

obtained after optimization.
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Fig. 11. Editing two synthetic scenes: making a typewriter diffuse (first row),

making a lamp metallic (second row), changing every object to be smooth

or diffuse (third row), duplicating a reflective pot (fourth row). Observe how

reflections are consistent with the scene edits.

4.2 Evaluation on Synthetic Scenes

We cannot directly compare our method with previous work, since

no other solution allows consistent editing of specular reflections

in radiance fields. As a best-effort evaluation, we compare quality

of diffuse/specular disentanglement which is required for reflection

editing. We show results both for the proof-of-concept case with

ground truth (g.t.) buffers, as well as the inverse rendering approach

using inferred buffers. In all cases our method has the advantage of

using these additional buffers—in particular diffuse/specular image

decomposition—that previous methods cannot exploit.

To allow precise evaluation, we use three synthetic scenes adapted

from [Poirier-Ginter et al. 2024] at 1152×768 resolution and changed
material properties to be shinier. We also removed all transparency

from material properties of scene objects. We render RGB images

and additional layers, used as input to our method.

We compare to methods based on 3DGS-based solutions that

claim to model diffuse, in particular: Gaussian Shader [Jiang et al.

2024], 3DGS-DR [Ye et al. 2024], Reflective-GS [Yao et al. 2024]

and the recent (to appear) EnvGS [Xie et al. 2025] which uses ray

tracing and is the closest method to ours. Again, our method has

the advantage of additional buffers that these previous approaches

are not designed to use.

Fig. 12. Editing a synthetic scene: changing the base reflectance (𝐹0) of the

cups (top), rotating the plate (middle), changing the roughness of the teapot

(bottom). Observe how reflections are consistent with the scene edits.

Fig. 14 shows that, in complex scenes, existing approaches incor-

rectly separate the diffuse from specular components of the scene—

reflections are represented as “fake mirror” geometry in the diffuse,

making them unusable for editing. In contrast, assuming an optimal

network (given ground truth inputs), our method reconstructs a

clean reflection-free diffuse pass.

In Tab. 1 we show the PSNR for the 3 synthetic scenes for each

method (more details in the supplemental). Metrics are computed

on a test path separate from input views. The top part of the table

does not use any ground truth values, only network predictions;

our method (Ours
(net. inputs)

) achieves on average better disentan-

glement for diffuse/specular compared to all other methods, in-

cluding the concurrent EnvGS, using network predicted normals

(EnvGS
(net. normals)

), despite its lower overall quality. As a proof-of-

concept, in the last two rows we show results for our method using

all the ground truth layers (Ours
(g.t. inputs)

). We also show EnvGS

using ground truth normals (EnvGS
(g.t. normals)

). Since our method

does not create “fake” geometry to reproduce the input RGB images,

reconstructing the final image is much harder, and thus PSNR is

lower. Note however that all other methods have lower final PSNR

than 3DGS and do not improve much on the diffuse nor specular

layers, showing their inability to properly model specular reflections

in complex scenes. In addition, qualitatively our image quality is

sufficient for editing (see video and figures). Achieving higher PSNR

requires solving the hard problem of accurate reconstruction of the

reflected part of the scene, as well as improved optimization (see

Sec. 5).

We also show optimization times (Tab. 2), which shows that our

method optimizes significantly faster than all previous method and

∼5× faster than the second best method EnvGS. In supplemental

we show statistics of number of primitives and FPS: as expected,

our method is slower but still interactive, since we trace multiple

rays per pixel.

4.3 Evaluation on Real Scenes

On real scenes, we use the network (Sec. 3.4) to compute layers from

input images. The prediction quality, seen for example in Fig. 10, is

far from perfect, but we domanage to obtain sufficiently good results
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Table 1. Disentanglement performance comparison. Note that our method

has the advantage of using additional buffers unavailable to other methods.

The second part of the table is shown as a proof-of-concept, using g.t. train

view inputs where possible.

Shiny Kitchen Shiny Livingroom Shiny Office

Diffuse Spec. Final Diffuse Spec. Final Diffuse Spec. Final

3DGS 13.11 13.17 32.83 17.01 17.35 32.72 19.10 15.74 34.91
Gauss. Shader 14.88 12.15 30.13 20.57 16.91 24.26 21.77 15.56 32.75

3DGS-DR 10.10 8.59 32.79 16.08 12.97 31.39 9.74 8.96 34.66

Refl. GS 13.50 13.45 32.17 20.43 20.46 29.85 20.63 17.24 33.68

EnvGS
(net. normals)

14.33 14.48 32.82 22.74 21.22 30.65 20.92 16.33 34.16

Ours
(net. inputs)

20.36 16.95 20.41 23.77 20.35 21.21 20.60 17.40 17.75

EnvGS
(g.t. normals)

14.51 15.15 32.96 22.64 21.46 30.31 20.81 15.90 34.34
Ours

(g.t. inputs)
33.20 24.30 26.96 29.68 26.46 26.96 31.74 24.48 27.54

to demonstrate similar editing examples (see video and Fig. 1). We

compare to EnvGS in Fig. 15 where we show renderings of diffuse

and specular layers, and the final novel view (left EnvGS, right ours).

We can clearly see that the EnvGS diffuse layer contains specular

content, especially visible in the Bear scene (far right).

In Supplemental (Sec. 3.5), we ablate the quality of network pre-

dictions, progressively replacing GT layers with predicted versions.

The most important layers are diffuse/specular that have a signifi-

cant impact on PSNR; all other layers are less important.

Table 2. Training times for different methods.

Shiny Kitchen Shiny Livingroom Shiny Office

GShader 2:24:26 2:28:28 2:31:09

3DGS-DR 0:44:09 0:45:45 0:51:41

ReflGS 1:28:57 1:28:38 1:43:22

EnvGS
(g.t. norm.)

3:34:27 2:40:52 3:13:21

Ours
(net. inputs)

0:48:52 0:23:56 0:37:05

Ours
(g.t. inputs)

0:23:16 0:20:48 0:24:13

4.4 Comparing our Raytracer to 3DGRT

We compared our raytracer’s performance to 3DGRT when used

as a drop-in replacement for regular 3DGS, by swapping it for the

splatting rasterizer while limiting to 1 ray per pixel and integrating

RGB color only.We trained for 7k iterations and ourmethod does not

have spherical harmonics; for details of the exact configuration used,

please see supplemental. Tab. 3 shows that our raytracer improves

training times and FPS performance over 3DGRT.

Table 3. Performance comparison between our raytracer and 3DGRT when

used as a drop-in replacement for 3DGS. Average across all MipNerf scenes

at different resolutions. Our method was run without spherical harmonics.

Downsampl.

Training Time FPS PSNR (dB)

3DGRT Ours Speedup 3DGRT Ours Speedup 3DGRT Ours

2 00:29:24 00:06:51 4.35× 26.77 49.93 2.34× 25.44 25.01

4 00:10:03 00:02:27 4.08× 75.49 143.93 2.43× 25.83 25.35

8 00:05:28 00:01:08 4.77× 139.09 248.75 2.24× 26.27 26.25

INDIRECT

RECONSTRUCTION

Input Training View Reconstructed Environment

TEST

CAM

GROUND 

TRUTH

Fig. 13. Our method reconstructs the environment behind the camera with

a high enough degree of fidelity to produce realistic novel views of parts of

the scene never observed in the input images. This reconstruction is part of

the same scene and can be observed by simply turning the camera around.

5 LIMITATIONS AND CONCLUSION

We make an important step forward to allow truly disentangled,

physically-based reflections for radiance fields. The main limitation

of our method is the performance of the network used to extract

layers: we are confident that such approaches will keep improv-

ing and provide the quality needed. Another limitation is lack of

support for transparency. This requires determining how to esti-

mate transparency from images (including producing training data

and corresponding networks), and an efficient rendering method.

Full scene editing with shadows updates requires a solution with

(at least partial) relighting. Finally, improving image quality even

with perfect layers requires more accurate reconstruction of the re-

flected scene. These are all hard problems and exciting new research

directions.

In conclusion, we presented a new approach that allows real-time,

consistent specular reflection editing in radiance fields, enabled by

our diffuse/specular disentanglement and our support for multi-

bounce reflections. The key to our solution is the use of separate

supervision of the diffuse and specular layers of images, building

on learning-based predictors of such layers. We also show how to

provide stable training and several performance improvements to

Gaussian ray tracing that, taken together, allow real-time, consistent,

physically-based editing of reflections, and reconstruction of unseen

reflected objects.
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Fig. 14. Disentanglement results of different methods on Shiny kitchen and Shiny Livingroom. Inlays show that our method does not mix reflections into

diffuse. Note that in these results, our method uses ground truth input buffers and EnvGS uses ground truth normals.
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Fig. 15. Our method compared against EnvGS [Xie et al. 2025] on real scenes from the Neural Catacaustics dataset [Kopanas et al. 2022]. Qualitatively, we

achieve better disentanglement at the cost of lower visual fidelity in the final render. Note that the denoiser was only applied to the final image.
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