Editable Physically-based Reflections in Raytraced Gaussian Radiance

Fields

YOHAN POIRIER-GINTER, Université Laval, Canada and Inria, Université Cote d’Azur, France

JEFFREY HU, Inria, Université Céte d’Azur, France

JEAN-FRANCOIS LALONDE, Université Laval, Canada
GEORGE DRETTAKIS, Inria, Université Cote d’Azur, France

1]
Shiny,Counter.
3 yusa

Vi
!

(ground truth inputs)

Synthetic Scene

Initial Render,

Real Scene
(network inputs)

1 Copied’Pre§s > »

Fig. 1. Our Gaussian-based radiance-field method allows interactive editing of path traced reflections, with consistent updates. We develop our proof-of-
concept method in synthetic scenes with known ground truth inputs and show its extension to a real scene with network predicted inputs.

Radiance fields such as 3D Gaussian Splatting allow real-time rendering of
scenes captured from photos. They also reconstruct most specular reflec-
tions with high visual quality, but typically model them with “fake” reflected
geometry, using primitives behind the reflector. Our goal is to correctly
reconstruct the reflector and the reflected objects such as to make specular
reflections editable; we present a proof of concept which exploits promising
learning-based methods to extract diffuse and specular buffers from photos,
as well as geometry and BRDF buffers. Our method builds on three key
components. First, by using diffuse/specular buffers of input training views,
we optimize a diffuse version of the scene and use path tracing to efficiently
generate physically-based specular reflections. Second, we present a spe-
cialized training method that allows this process to converge. Finally, we
present a fast ray tracing algorithm for 3D Gaussian primitives that en-
ables efficient multi-bounce reflections. Our method reconstructs reflectors
and reflected objects—including those not seen in the input images—in a
unique scene representation. Our solution allows real-time, consistent edit-
ing of captured scenes with specular reflections, including multi-bounce
effects, changing roughness etc. We mainly show results using ground truth
buffers from synthetic scenes, and also preliminary results in real scenes

Authors’ addresses: Yohan Poirier-Ginter, Université Laval, Quebec, Canada and Inria,
Université Cote d’Azur, Nice, France, yohan.poirier-ginter.1@ulaval.ca; Jeffrey Hu,
Inria, Université Cote d’Azur, Nice, France, hujh14@gmail.com; Jean-Francois Lalonde,
Université Laval, Quebec, Canada, jean-francois.lalonde@gel.ulaval.ca; George Dret-
takis, Inria, Université Cote d’Azur, Nice, France, george.drettakis@inria.fr.

SA Conference Papers "25, December 15-18, 2025, Hong Kong, Hong Kong

© 2025 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in SIGGRAPH Asia 2025
Conference Papers (SA Conference Papers °25), December 15-18, 2025, Hong Kong, Hong
Kong, https://doi.org/10.1145/3757377.3763971.

with currently imperfect learning-based buffers. Code and data are available
at: https://repo-sam.inria.fr/nerphys/editable-gaussian-reflections/.

CCS Concepts: « Computing methodologies — Rendering; Reconstruc-
tion.

Additional Key Words and Phrases: Gaussian splatting, differentiable ren-
dering, path tracing

ACM Reference Format:

Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Dret-
takis. 2025. Editable Physically-based Reflections in Raytraced Gaussian
Radiance Fields. In SIGGRAPH Asia 2025 Conference Papers (SA Conference
Papers °25), December 15-18, 2025, Hong Kong, Hong Kong. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3757377.3763971

1 INTRODUCTION

Neural Radiance Fields (NeRFs) [Mildenhall et al. 2020] and 3D
Gaussian Splatting (3DGS) [Kerbl et al. 2023] allow high-quality
novel-view synthesis with only posed photographs as input. One of
their major strengths is that they render view-dependent effects such
as low- to medium-frequency specular reflections with high visual
quality. However, the representation of reflections is entangled with
the geometry: they are baked into a directional radiance component,
and often are actually “fake mirror geometry” situated behind the re-
flective surfaces [Meng et al. 2024; Zhang et al. 2024]. This precludes
consistent editing of scenes with reflections, i.e., where reflections
will be correctly updated when changing geometry or materials. We
propose the first method that allows interactive reflection-consistent
editing of radiance fields (Fig. 1) by using distinct processes to re-
construct each of the diffuse and reflective components of the scene.

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

HTTPS://ORCID.ORG/0009-0001-5806-5136
HTTPS://ORCID.ORG/0009-0003-4400-0862
HTTPS://ORCID.ORG/0000-0002-6583-2364
HTTPS://ORCID.ORG/0000-0002-9254-4819
https://orcid.org/0009-0001-5806-5136
https://orcid.org/0009-0003-4400-0862
https://orcid.org/0000-0002-6583-2364
https://orcid.org/0000-0002-9254-4819
https://orcid.org/0000-0002-9254-4819
https://doi.org/10.1145/3757377.3763971
https://repo-sam.inria.fr/nerphys/editable-gaussian-reflections/
https://doi.org/10.1145/3757377.3763971

N
.

Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Drettakis

z ks

Q

2

o

=

w

a

Gaussian

\ Path Tracing

w

5 > —
3 /

GEOMETRY

Train View Layers

Novel View Diffuse & Specular Renders

Fig. 2. Our method takes as input several buffers for every training view (left), and reconstructs a unique gaussian-based scene where reflections in novel
views are computed with cached diffuse (middle) and physics-based path tracing (right). This figure shows ground truth input buffers from a synthetic scene,
from top to bottom: separated targets (diffuse and non-diffuse), BRDF parameters (base reflectance and roughness), and geometry (depth and normals).

Our method also allows reconstruction of reflected objects unseen
in the input images.

In the original versions of NeRF and 3DGS, a directional radi-
ance representation is modeled by a Multi-Layer Perceptron (MLP)
and Spherical Harmonics (SH) respectively. However, these low-
frequency representations cannot represent reflections accurately,
and thus the optimization favors the creation of “fake mirror geom-
etry” (see video). Several improvements exist for better reflection
in NeRFs, e.g., by changing parameterizations or encodings [Ma
et al. 2024; Verbin et al. 2022]. Similarly, several methods attempt
to improve reflections in 3DGS, often for distant lighting [Jiang
et al. 2024; Ye et al. 2024]. These methods still suffer from the en-
tangled reflection representation. Recently, NeRFcasting [Verbin
et al. 2024] and EnvGS [Xie et al. 2025] use ray tracing but require
a separate scene representation for reflections to allow stable opti-
mization. Representing reflectors and reflected objects as separate
scenes prevents consistent editing of the radiance field.

To address these problems, our key intuition is to have a unique
scene with two distinct—but concurrent—optimizations: one for the
diffuse, and one for the specular components of the scene, supervised
on diffuse and specular input buffers respectively. In this paper, we
use the term specular to mean all non-diffuse reflections, from rough
glossy to pure mirror. The diffuse buffer captures diffuse global illu-
mination, including shadows and interreflections, while the specular
buffer captures mirror and glossy reflections. We reconstruct the
diffuse component of the scene using ray traced Gaussian primitives
and compute specular reflections with path tracing while treating
the diffuse component similarly to an irradiance cache [Ward et al.
1988]. Our reflections support surfaces of different roughness, and
multi-bounce effects computed in a physically-based manner, i.e.,
exclusively with path tracing. They also allow interactive scene
editing with physically-correct reflections. Note that transparency
is more complicated, since buffers would have to deal with two
rays—reflected and refracted; we thus leave it as future work.

First, we present a proof-of-concept of our method on synthetic
scenes, where rendered images are used in the place of photos, and
ground truth values are used for all buffers (diffuse, specular, mate-
rials etc.). This solution shows we can duplicate a reflective object

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

in a scene, and all real, captured objects will be correctly reflected in
the duplicated object interactively, even with multiple bounces (see
Fig. 1). Second, we present an editable inverse rendering pipeline
on synthetic and real images using buffers predicted by neural
networks, albeit with lower quality for novel-view synthesis. In par-
ticular, recent intrinsic image decomposition methods can extract
the required buffers from photographs [Roberts et al. 2021; Zeng
et al. 2024], by training on synthetic data where light transport is
separated into diffuse and reflective (or non-diffuse) components at
the first bounce. That being said, while these methods are improving
at outstanding rates, the current quality of predicted buffers from
existing methods (e.g., [Ke et al. 2024; Liang et al. 2025a; Zeng et al.
2024]) is only partially sufficient for our goals. We thus focus mainly
on our proof-of-concept using synthetic data with perfect buffers
to develop our method, and present preliminary results for scenes
processed with the best possible existing learning-based methods
at the time of writing.

In short, our method leverages intrinsic decomposition to sepa-
rately reconstruct the diffuse and reflected components of a scene
(see Fig. 2) to make editable specular reflections possible (see video).
We optimize a unique representation of the scene, i.e., both the reflec-
tors and reflected objects are represented with the same Gaussian
primitives, by carefully designing separate losses and a training
schedule. This unique representation makes it possible to recon-
struct objects only viewed indirectly through specular reflections, as
shown in Fig. 3. Finally, we present an efficient hardware-accelerated
Gaussian primitive ray tracer, which uses efficient spatial data struc-
tures and other techniques to optimize Gaussian primitive traversal.

In summary our contributions are:

e A reconstruction method for radiance fields with distinct
optimization for diffuse and specular components, using path
tracing for the latter.

e An efficient and accurate training method that reconstructs
the diffuse and the specular components of the scene in a
single representation.

e An efficient ray tracer for Gaussian primitives, that is fast
enough to enable treatment of multiple bounces with minimal
computational overhead.

Input Training Views
% N

(train views do not see the book cover directly)

Editable Physically-based Reflections in Raytraced Gaussian Radiance Fields « 3

Out Of Distribution Test View
w
T

OUR METHOD

Ground Truth Cover — ﬂH

Fig. 3. We showcase reconstruction of objects viewed indirectly by recovering the cover of a book only visible indirectly through a mirror in the training views
(left). From these views alone, our method accurately recovers the cover (right), unlike standard methods like 3DGS (middle). Note that in these results, our

method uses ground truth input buffers.

Given our advantage of additional input buffers, and notably dif-
fuse/specular image decomposition, we achieve state-of-the-art
(SOTA) diffuse/specular disentanglement for novel-view synthesis,
even though overall visual quality is lower that previous methods.
Our disentanglement allows real-time reflection and material edit-
ing in both the proof-of-concept case with ground truth buffers and
for real scenes. For the latter we present an experimental neural net-
work that provides the buffers we require. While quality measured
on our synthetic scenes given SOTA networks is low, it is sufficient
for realistic, interactive scene manipulation in certain real scenes,
showing the potential of the approach with future, better quality
learning-based buffer predictions. Code and data are available at:
https://repo-sam.inria.fr/nerphys/editable-gaussian-reflections/.

2 RELATED WORK

Our goal is to provide physically-based specular reflections for
radiance fields that allow consistent real-time editing and recon-
struction of the unseen reflected objects. We review most closely
related methods.

Reflections in NeRF. Neural radiance fields, or NeRF [Mildenhall
et al. 2020], learn an implicit scene representation, parametrized
with a multi-layer perceptron (MLP), from multi-view posed images.
NeRF typically represents specular reflections with a combination of
view-dependent color in the MLP and “fake geometry” representing
the reflected objects behind the reflector. Ref-NeRF [Verbin et al.
2022] improve on this by using the reflected view direction, NeR-
FReN [Guo et al. 2022] model the transmitted and reflected scene
separately, similarly for MS-NeRF [Yin et al. 2025], and Mirror-
NeRF [Zeng et al. 2023] assume planar mirrors. Others [Liang et al.
2023a; Liu et al. 2023; Wang et al. 2024] exploit signed distance
fields [Li et al. 2023; Wang et al. 2021] to obtain more accurate scene
geometries, or modify the directional encoding [Ma et al. 2024] to
better capture the spatially-varying nature of near-field lighting.
NeRF-casting [Verbin et al. 2024] integrates reflection features along
reflection directions. However, the need for multiple MLP queries for
each ray and the creation of a separate version of the scene makes
it both impractical for real-time rendering and reflection-consistent
scene editing.

Reflections in 3D Gaussian Splatting. 3DGS [Kerbl et al. 2023] in-
troduces a primitive-based representation for radiance fields, and
uses efficient rasterization to render Gaussian primitives, achieving
fast training and real-time rendering. 3DGS-based approaches model
reflections with a combination of view-dependent spherical harmon-
ics (SH) and the creation of “fake geometry” representing reflected
objects behind the reflected surface. More recent works [Jiang et al.
2024; Ye et al. 2024], enhance reflection modeling by incorporating
additional environment maps. However, these methods focus only
on distant lighting. 3iGS [Tang and Cham 2024] integrates an il-
lumination field through tensorial factorization (as in [Chen et al.
2022; Jin et al. 2023]) and renders the final reflections with a neural
renderer, but is constrained to bounded scenes. Ref-GS [Zhang et al.
2025] models near-field reflection using a tensorial factorization
within a 2DGS framework [Huang et al. 2024], and models far-field
illumination with a spherical feature grid. None of these approaches
overcome the basic limitation of representing specular reflections
with “fake geometry”, making them unsuitable for consistent editing.
Some approaches also assume knowledge of planar mirrors [Liu et al.
2024; Meng et al. 2024]. Most approaches are efficient for objects,
but were not tested on full scenes [Lai et al. 2025]. A predecessor of
3DGS [Kopanas et al. 2022] models reflections with a separate point
cloud rendered with an MLP and shows reflection editing, which is
not truly consistent.

Ray Tracing with Gaussian Primitives. 3D Gaussian Ray Tracing
(3DGRT) [Moenne-Loccoz et al. 2024] renders a 3D Gaussian rep-
resentation using ray tracing instead of rasterization. They build
a bounding volume hierarchy and cast a ray for each pixel using
high-performance GPU ray tracing hardware [Parker et al. 2010].
3DGUT also showed that reflection rays are possible in a splat-
ting framework [Wu et al. 2025]. A similar proposal is made in
RaySplats [Byrski et al. 2025a], more recently extended in REdiS-
plats [Byrski et al. 2025b] and in RayGauss [Blanc et al. 2025]. After
training, 3DGRT shows they can render secondary ray effects such
as reflections. Critically, only mesh-Gaussian reflections can be han-
dled by their framework; in contrast, we model Gaussian-Gaussian
reflections during training. We also improve over 3DGRT with
several performance enhancements (see Sec. 3.3). Inter-Reflective

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

https://repo-sam.inria.fr/nerphys/editable-gaussian-reflections/

4+ Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Drettakis

Ground Truth

Diffuse

Specular

Final Render

Fig. 4. Radiance fields, recovered for example with EnvGS [Xie et al. 2025]
(left), often rely on duplicate geometry to represent specular reflections;
notice the replicas of the environment placed within the chrome spheres
(top-left). Our method (middle) represents reflections with physically-based
light transport only, closely matching ground truth novel views (right). Note
that in these results, our method uses ground truth input buffers.

Gaussian Splatting (IRGS) [Gu et al. 2024] attempts to address inter-
reflection modeling by extending the 2DGS framework with a dif-
ferentiable ray tracing approach. EnvGS [Xie et al. 2025] trains two
versions of the scene: a base scene (with rasterization), and “environ-
ment Gaussians” (with raytracing) which represents scene elements
only visible through reflections. While this approach improves the
separation between the diffuse and specular component, there are
still residual reflections in the diffuse buffer (as we show in Sec. 4)
and the lack of a BRDF model makes it unsuitable for editing. In
contrast, we handle inter-reflections, and also reconstruct scene
elements only visible in specular reflections, thanks to our unique
scene representation. This allows consistent interactive reflection
editing.

Inverse Rendering and Relighting. Scene editing could be achieved
using full inverse rendering [Li et al. 2018; Marschner 1998; Nimier-
David et al. 2019]. However, full physically-based inverse render-
ing is ill-posed [Kouros et al. 2024] and expensive [Li et al. 2018;
Nimier-David et al. 2019; Srinivasan et al. 2021; Zhang et al. 2021],
and currently cannot handle complex scenes [Shi et al. 2025]. GS-
IR [Liang et al. 2023b] leverages 3DGS to accelerate it. Relighting
techniques [Bi et al. 2024; Gao et al. 2024; Kuang et al. 2024; Poirier-
Ginter et al. 2024] allow the lighting to be edited, and are orthogonal
to the kind of edits we show (moving reflective objects and changing
materials). Combining them is interesting future work.

3 METHOD

At a high level, our method starts with BRDF parameters from in-
put views, attaches these parameters as well as depth and normals
to diffuse Gaussians using 3DGS-like optimization, and during op-
timization computes specular reflections by simulating full light
transport of the specular component. At each intersection, accumu-
lated parameters are used to perform proper ray tracing.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

3.1 Diffuse/Specular Separation for Physics-Based
Reflections

By computing and supervising diffuse and specular reflections sep-
arately, our method makes it much harder for the optimization to
“cheat” and create “fake” geometry to represent reflections.

To achieve this we make a key design choice by having separate
supervision signals: one for the diffuse and one for the specular
component—both are computed with ray tracing. However, we cre-
ate a unique scene representation for both. The Gaussian primitives
in this reconstruction will represent all geometry visible in the input
views, but also the reflected objects at coherent positions in space
(see Fig. 13).

The RGB colors in the input images are the result of (real-world)
physical light transport, expressed by the rendering equation:

Lo(x,wo)=Le(x,wo)+/QLi(x,wi)f(wi,n,wo)cost% do;, (1)

where Ly, Le, L; are the outgoing, emitted, incoming radiance re-
spectively, w; and w, are the incoming and outgoing directions, n
is the surface normal at point x, cos 6; = w; - n, and f is the BRDF.
We use the approximation that f = f; + f; with f; and f; the diffuse
and specular components. Ignoring the emissive term, our method
approximates light transport by the sum of two terms:

Lo(x, o) = / Li(x, @;) fy(wi, n) cos 0; dew;+
Q
(2)
/ Li(x, w;) fs (@i, n, wo) cos ; dw; .
Q

Using Heckberts light path notation [Heckbert 1990], the first term
computes all L((D|S)*)DE paths, where L are the lights, D the
diffuse vertices in a path, S the specular vertices and & is the eye or
camera, while the second term computes all L((D|S)*)SE paths.
When path tracing scenes, each term is computed with the same
paths, but at the first intersection the first (diffuse) term is evaluated
using only f;, and the second (specular) term using only f;. We
reconstruct the diffuse component by supervising on the diffuse
buffer, resulting in a “cached” version of diffuse lighting L; which
we use like an irradiance cache already multiplied with albedo i.e.

Lo(x.00) = Lg + /Q Li(,00) fy (w3 1, 00) cos B daoi . (3)

We thus avoid a large part of the full path tracing costs, namely the
first term in Eq. (2). This reconstruction contains “baked” shadows
and diffuse color bleeding. Other quantities (depths, normals, ma-
terial properties) are also supervised with corresponding buffers,
while reflections (second term in Eq. (2)) are computed with path
tracing. Diffuse and specular components are shown in Figs. 2 and 4.

To develop our approach and evaluate it quantitatively, we first
use synthetic scenes, rendering RGB images that serve the same
purpose as real photos for radiance field reconstruction. We render
exact image buffers per input view for diffuse and specular com-
ponent of Eq. (2). We also render buffers with all depths, normals,
BRDF coeflicients per pixel that are attached to Gaussians, and then
used to perform proper ray traced reflections. For real images, we
use a neural network trained on such path traced images (e.g., using
the Hypersim [Roberts et al. 2021] and InteriorVerse [Zhu et al.

2022] datasets) to extract diffuse and specular buffers, and buffers
for the other parameters (Sec. 3.4).

We use the Cook-Torrance BRDF [Cook and Torrance 1982] and
specifically, a subset of the Disney BRDF formulation [Burley 2012].
The parameters of this model are the roughness p and the base
reflectance or Fy which is defined based on the metalness, specular
and color parameters [Burley 2012].

Reconstructing the Diffuse Component. We reconstruct the diffuse
component using a single diffuse RGB value per Gaussian primitive
instead of spherical harmonics. This step could use the standard
3DGS splatting pipeline, but we prefer to use our ray tracing so-
lution throughout to avoid the discrepancy induced by the affine
approximation of splatting [Huang et al. 2025], ensuring a single
consistent solution. Note that, like 3DGRT, our scenes are incom-
patible with 3DGS since we use per-pixel sorting to avoid popping
artifacts.

The diffuse component is supervised directly with the diffuse
buffer, and reconstructs a version of the scene with diffuse global
illumination and shadows. For the other quantities (normals, rough-
ness and base reflectance), we attach values to each Gaussian primi-
tive, and optimize with supervision from the per-input-view buffers.
We also optimize the expected termination depth [Kerbl et al. 2023]
with the depth buffers.

Max Path Length 1 Max Path Length 2 Max Path Length 3 Max Path Length 4

used for optimization

Fig. 5. We support multi-bounce reflections during optimization. The num-
ber of bounces can be adjusted, trading off performance vs. accuracy.

Ray Traced Physics-Based Specular Reflections for Radiance Fields.
We compute the L((D|S)*)SE paths with path tracing of the
Gaussian primitives and cached diffuse. Each primitive is initialized
with a base reflectance value Fy initialized at 0.04 and with rough-
ness and normal values initialized at 0. Each ray traverses Gaussians
while accumulating values with alpha-blending as in 3DGS, for all
quantities, including normals, roughness and Fy values. The accumu-
lated “normal” value is then normalized to unit length. We compute
the intersection at the expected termination depth and use accu-
mulated normal, roughness and Fy values to importance sample a
random reflection ray with the Cook-Torrance BRDF. Our approach
supports multiple ray bounces natively, see Fig. 5. In practice, we
set the max path length to 3, resulting in good performance at the
cost of some minor inaccuracies (i.e. the black spots in reflections
in Fig. 1). During these bounces we query the diffuse component
representation for color, which is the (diffuse component of) radi-
ance extracted from the input images (i.e., real-world lighting for
photos). We train at 1 sample per pixel, but for offline rendering
use 128 samples and then apply the OptiX denoiser (see Fig. 6). The
specular component is supervised with the specular buffer provided
as input.

Editable Physically-based Reflections in Raytraced Gaussian Radiance Fields « 5

32 Samples Denoised Ground Truth

1 Sample Per Pixel Prediction

Fig. 6. We support physically-based reflections with different levels of rough-
ness in the same scene. At inference, we sample several samples per pixel
(column 1) and denoise with the OptiX denoiser (column 2).

Finally, we adapt dense initialization [Kotovenko et al. 2025]
instead of densification to further accelerate convergence; we found
ray tracing effective at handling the large number of small Gaussians
that dense initialization provides. We do not densify further and
aim for a number of gaussians comparable with the baselines; for
details refer to Supplemental.

3.2 Optimizing a Unique Scene for Radiance Field
Reflections

Optimizing a representation that uses Gaussian primitive ray trac-
ing is hard: previous approaches [Verbin et al. 2024; Xie et al. 2025]
showed that flowing gradients naively through reflections damages
geometric reconstruction. This can create a feedback effect where
bad geometry skews reflection rays, leading to more damage. These
previous approaches side-step this problem by optimizing two sepa-
rate radiance fields, one for the primary scene and one for reflections
(e.g., [Xie et al. 2025]). However, such a choice precludes scene edit-
ing with multi-bounce reflections, and can hinder reconstruction
of reflected objects unseen in the input views. We overcome this
optimization instability and reconstruct a unique scene.

Diffuse/specular separation resolves the ambiguity between tex-
ture and reflected objects, letting us maintain a unique scene while
keeping training stable. Our training proceeds with two different
losses: one for diffuse and one for specular components. It also
recovers normals and BRDF directly through input buffer supervi-
sion and not via inverse rendering: we do not differentiate normals
and BRDF w.r.t. the RGB images, ensuring that the scene remains
well-formed even with gradients flowing through reflections.

We cast a path through each pixel, and use the first segment of the
path to query diffuse global illumination (see Sec. 3.1), represented
by the diffuse component reconstruction. We denote this quantity d
and we supervise with the value d* in the diffuse buffer:

Ly=Mgt(d,d"), (@)

where (*) denotes the accumulated value, (*) the corresponding
ground truth value from the buffers, and ¢ the L1 loss. We then
continue the path using the specular BRDF component f; and match
the contribution of the remaining path segmentsc;, i =2...K to
the specular buffer s:

K
Ly =AY G5,)

i=2
where K is the maximum path length. To this we add a loss match-
ing the accumulated values of other attached properties namely

depth f, normal A, roughness p, and base reflectance Fg to their

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

6 + Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Drettakis

corresponding target buffers:
Lo = £(i,t%) + An (i, n™) + A £(p, p*) + A, £(Fo, Fy) (6)

This loss is only applied to the first path segment since these buffers
are only known for this segment. Our final objective is:

xgglE [Lg+ L]+ o in E[La]. ()
where 0 contains the position, rotation, scale and alpha parameters
for each Gaussian. Note that both subobjectives are optimized at
the same time. We use values 15 = 5.0, A; = 3.0, A; = 2.5, A, = 2.5,
Ap = 1.0 and Af, = 1.0. We compute all losses in linear space.

Our training schedule starts with a warmup for 750 iterations
with the first ray segment only, which reconstructs a first version
of the diffuse component. We then enable all reflections and add
M = 175,000 far-field Gaussians initialized around the scene origin
with positions randomly sampled from a normal distribution with
o = 4S truncated at 30; the scene extent S is estimated as in 3DGS
by computing the radius of a sphere which bounds the input camera
poses [Kerbl et al. 2023]. As optimization progresses, these primi-
tives provide a (coarse) approximate reconstruction of the reflected
objects in the environment (Fig. 13).

3.3 Efficient Ray Tracer for Multi-Bounce Radiance Field
Reflections

To achieve our goals, we need efficient Gaussian ray tracing, both
for optimization and rendering (“inference”), beyond the speed of
existing methods (Sec. 2). To do this we focus on four components:
1) Using oriented bounding boxes (OBBs) to bound Gaussians 2)
Avoiding multiple Bounding Volume Hierarchy (BVH) traversals, 3)
Fused forward/backward pass and 4) Aggressive truncation. Num-
bers reported below use the configuration employed to compare
with 3DGRT [Moenne-Loccoz et al. 2024] (Supplemental, Sec. 3.3).

Emulated OBB
(Our Method)

AABB - Icosahedron
(Naive Solution) (Prior Work)

Fig. 7. We encapsulate Gaussians with oriented bounding boxes (OBB)
using instancing with hardware-accelerated OptiX transforms.

Oriented Bounding Boxes. Prior methods [Condor et al. 2025;
Moenne-Loccoz et al. 2024] use an icosahedron mesh to bound Gaus-
sians, allowing fast intersections for rendering, but requiring costly
BVH updates for the 20 triangles assigned to each Gaussian during
optimization. To avoid this overhead, we exploit the hardware accel-
erated capabilities of OptiX, allowing efficient use of OBBs 1. OptiX
only supports Axis-Aligned Bounding Boxes (AABBs) natively, thus
naively emulating OBBs would still result in slow traversal (Fig. 7).

The method of Moenne-Loccoz et al. [2024] describes the icosahedron approach,
however a recent code release associated with the paper also uses OBBs. [Lee et al.
2024] also proposed OBBs but for splatting.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

Exact Gaussians Approximated Gaussians

L%

approximate color = 0.0012
= 0.
7,=1.0 ©,=0.5 =012 [1,=0007 | <001 exact final

transmittance

Fig. 8. We accelerate integration by approximating Gaussians of low contri-
bution, enabling aggressive transmittance thresholding during optimization.

Instead, we exploit hardware accelerated transforms of AABBs
provided by OptiX, by instancing an AABB in a two-level accel-
eration structure [Wald et al. 2020]. This has the added benefit of
letting us simplify the Gaussian evaluation since we avoid comput-
ing covariance matrices explicitly and we do not invert the Gaussian
transforms ourselves. On the KitcHEN scene (Fig. 12), an incremen-
tal BVH update adds a minimal overhead of 9.5%.

Avoiding Multiple BVH Traversals per Ray. Per-pixel sorting a
large number of Gaussian primitives is slow since it requires in-
coherent memory accesses. 3DGRT [Moenne-Loccoz et al. 2024]
resolved this by collecting and sorting the nearest primitives in
small (typically, 16) groups which fit in register memory, requiring
multiple BVH traversals. To avoid this, we perform a single traver-
sal and store all intersected Gaussians into a per-pixel linked-list
(PPLL) [Yang et al. 2010] “replay buffer” which contains Gaussian
id, alpha value, etc. We then loop over this buffer multiple times to
collect, sort, and integrate the nearest 16 Gaussians. While this ap-
proach does increase memory consumption, our experiments show
high-resolution scenes can still be handled on modern cards (e.g.,
RTX4090). Our experiments show this results in speedups of 10-50%
depending on the scene and resolution.

Fused Forward/Backward Pass. To further accelerate optimization,
we use a fused forward/backward pass where each pixel’s backward
pass starts immediately after the forward pass. We use a PPLL to
store data for the backward pass: the intersected Gaussian ids, hit
distances, precomputed alpha values, etc. Our backward pass is
quite fast, a combined forward/backward is 2.23 times slower than
just the forward pass while 3DGS is 3.31 times slower.

Aggressive Primitive Truncation. Since transmittance decays rapid-
ly along a ray, all Gaussians past a certain point have minimal
contribution to the final color. 3DGRT [Moenne-Loccoz et al. 2024]
handled this by reducing the transmittance threshold from 7 = 0.001
to 7 = 0.03 at inference. Doing so during optimization fails since
discarding even seemingly insignificant Gaussians biases gradients
of the others in front, making them to grow to mask the background.
To avoid this instability, we discard farthermost Gaussians, and scale
the gradients of those remaining using an approximation of their
color, similar to [Byrski et al. 2025a; Hahlbohm et al. 2025], see Fig. 8.
See Supplemental for more details.

T

Input RGB J

“Depth”
Prompt

pg L £

Prediction Target

“Roughness”

Fig. 9. We fine-tune a pretrained Stable Diffusion 2 network into a one-step
inverse rendering network.

3.4 A Dedicated Network to Infer Disentangled Layers

Recent learning-based methods have made incredible advances in
inferring different intrinsic quantities such as depth, normals or
reflectance properties directly from images [Garcia et al. 2025; Ke
et al. 2024; Li et al. 2025; Liang et al. 2025a; Xi et al. 2024; Zeng et al.
2024]. Many of these methods fine-tune a diffusion model (typically
StableDiffusion2 (SD2) [Rombach et al. 2022]). Marigold [Ke et al.
2024] and RGB—X [Zeng et al. 2024] require many denoising steps;
more recent work [Garcia et al. 2025; Xu et al. 2025] showed that for
strongly conditioned tasks, a single step model can be equally accu-
rate and cheaper at inference. Additionally, concurrent work [Liang
et al. 2025b] leverages video models to improve quality and temporal
stability; we leave extension to video models as future work, and
base our model on SD2.

Based on these recent results, and since none predict the non-
diffuse buffer needed by our method, we fine-tune SD2 into a single
step model that predicts all the buffers (diffuse, specular, normals,
see Sec. 3.2) and switches between them with text prompts, using the
approach of RGB&X [Zeng et al. 2024] (Fig. 9). For training, we use
a mix of the Hypersim [Roberts et al. 2021] and InteriorVerse [Zhu
et al. 2022] datasets and provide as input the RGB image and a
prompt designating the desired buffer. We use a latent mean squared
error (MSE) loss for fast training. Fig. 10 shows that our network
yields plausible predictions of all target buffers.

4 RESULTS AND EVALUATION

We first present results of real-time reflection editing of radiance
fields. Since no previous method can perform such editing, we
present our best-effort evaluation of diffuse/specular disentangle-
ment, and compare our ray-tracer with that of 3SDGRT [Moenne-
Loccoz et al. 2024]. Finally, in supplemental we show that we per-
form better than 3DGS for a sparse set of views.

4.1 Real-Time Editing

We show results of real-time editing of radiance field with specu-
lar reflections in the supplemental video and in Figs. 1, 11 and 12.
We can consistently move reconstructed reflectors: reflections are
correctly updated in other objects in the radiance field. Similarly,
we can modify material properties with consistent updates. These
operations are only possible because of our full disentanglement
and multiple bounces we enable. Note however that shadows are
“baked” into the diffuse layer, and are not updated. In Figs. 3 and 13,
we see that our method reconstructs the unseen reflected objects,
with accuracy that is sufficient for specular reflection computation.

Editable Physically-based Reflections in Raytraced Gaussian Radiance Fields « 7

Novel View v

Reughness!

Fig. 10. Example network predictions (left) for a given input view (top), and
novel view renderings (right) of the different layers used in our approach
obtained after optimization.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

8 « Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Drettakis

INITIA]!['ATE o

Fig. 11. Editing two synthetic scenes: making a typewriter diffuse (first row),
making a lamp metallic (second row), changing every object to be smooth
or diffuse (third row), duplicating a reflective pot (fourth row). Observe how
reflections are consistent with the scene edits.

4.2 Evaluation on Synthetic Scenes

We cannot directly compare our method with previous work, since
no other solution allows consistent editing of specular reflections
in radiance fields. As a best-effort evaluation, we compare quality
of diffuse/specular disentanglement which is required for reflection
editing. We show results both for the proof-of-concept case with
ground truth (g.t.) buffers, as well as the inverse rendering approach
using inferred buffers. In all cases our method has the advantage of
using these additional buffers—in particular diffuse/specular image
decomposition—that previous methods cannot exploit.

To allow precise evaluation, we use three synthetic scenes adapted
from [Poirier-Ginter et al. 2024] at 1152768 resolution and changed
material properties to be shinier. We also removed all transparency
from material properties of scene objects. We render RGB images
and additional layers, used as input to our method.

We compare to methods based on 3DGS-based solutions that
claim to model diffuse, in particular: Gaussian Shader [Jiang et al.
2024], 3DGS-DR [Ye et al. 2024], Reflective-GS [Yao et al. 2024]
and the recent (to appear) EnvGS [Xie et al. 2025] which uses ray
tracing and is the closest method to ours. Again, our method has
the advantage of additional buffers that these previous approaches
are not designed to use.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

JREELECTANCE S

AW =

Fig. 12. Editing a synthetic scene: changing the base reflectance (Fy) of the
cups (top), rotating the plate (middle), changing the roughness of the teapot
(bottom). Observe how reflections are consistent with the scene edits.

Fig. 14 shows that, in complex scenes, existing approaches incor-
rectly separate the diffuse from specular components of the scene—
reflections are represented as “fake mirror” geometry in the diffuse,
making them unusable for editing. In contrast, assuming an optimal
network (given ground truth inputs), our method reconstructs a
clean reflection-free diffuse pass.

In Tab. 1 we show the PSNR for the 3 synthetic scenes for each
method (more details in the supplemental). Metrics are computed
on a test path separate from input views. The top part of the table
does not use any ground truth values, only network predictions;
our method (Ours(pet. inputs)) achieves on average better disentan-
glement for diffuse/specular compared to all other methods, in-
cluding the concurrent EnvGS, using network predicted normals
(EnvGS(pnet. normals))> despite its lower overall quality. As a proof-of-
concept, in the last two rows we show results for our method using
all the ground truth layers (Oursg ¢ jnputs))- We also show EnvGS
using ground truth normals (EnvGSg ; normals))- Since our method
does not create “fake” geometry to reproduce the input RGB images,
reconstructing the final image is much harder, and thus PSNR is
lower. Note however that all other methods have lower final PSNR
than 3DGS and do not improve much on the diffuse nor specular
layers, showing their inability to properly model specular reflections
in complex scenes. In addition, qualitatively our image quality is
sufficient for editing (see video and figures). Achieving higher PSNR
requires solving the hard problem of accurate reconstruction of the
reflected part of the scene, as well as improved optimization (see
Sec. 5).

We also show optimization times (Tab. 2), which shows that our
method optimizes significantly faster than all previous method and
~5X faster than the second best method EnvGS. In supplemental
we show statistics of number of primitives and FPS: as expected,
our method is slower but still interactive, since we trace multiple
rays per pixel.

4.3 Evaluation on Real Scenes

On real scenes, we use the network (Sec. 3.4) to compute layers from
input images. The prediction quality, seen for example in Fig. 10, is
far from perfect, but we do manage to obtain sufficiently good results

Table 1. Disentanglement performance comparison. Note that our method
has the advantage of using additional buffers unavailable to other methods.
The second part of the table is shown as a proof-of-concept, using g.t. train
view inputs where possible.

Shiny Kitchen Shiny Livingroom Shiny Office

Diffuse Spec. Final Diffuse Spec. Final Diffuse Spec. Final
3DGS 13.11 13.17 32.83 17.01 17.35 32.72 19.10 15.74 34.91
Gauss. Shader 14.88 12.15 30.13 20.57 16.91 24.26 21.77 15.56 32.75
3DGS-DR 10.10 8.59 32.79 16.08 12.97 31.39 9.74 896 34.66
Refl. GS 13.50 13.45 32.17 20.43 20.46 29.85 20.63 17.24 33.68

EnvGS(net. normals) 1433 1448 32.82 2274 21.22 30.65 20.92 16.33 34.16
OUIS(uer inputsy 20.36 16.95 20.41 23.77 2035 21.21 20.60 17.40 17.75

EnvGS(gr normalsy 1451 15.15 32.96 22.64 21.46 30.31 20.81 1590 34.34
33.20 24.30 26.96 29.68 26.46 26.96 31.74 24.48 27.54

Ours(g.t. inputs)

to demonstrate similar editing examples (see video and Fig. 1). We
compare to EnvGS in Fig. 15 where we show renderings of diffuse
and specular layers, and the final novel view (left EnvGS, right ours).
We can clearly see that the EnvGS diffuse layer contains specular
content, especially visible in the BEAR scene (far right).

In Supplemental (Sec. 3.5), we ablate the quality of network pre-
dictions, progressively replacing GT layers with predicted versions.
The most important layers are diffuse/specular that have a signifi-
cant impact on PSNR; all other layers are less important.

Table 2. Training times for different methods.

Shiny Kitchen Shiny Livingroom Shiny Office

GShader 2:24:26 2:28:28 2:31:09
3DGS-DR 0:44:09 0:45:45 0:51:41
ReflGS 1:28:57 1:28:38 1:43:22
EnvGS(gt. norm.) 3:34:27 2:40:52 3:13:21
Ourspet. inputs) 0:48:52 0:23:56 0:37:05

OurS(gAt‘ inputs) 0:23:16 0:20:48 0:24:13

4.4 Comparing our Raytracer to 3DGRT

We compared our raytracer’s performance to 3DGRT when used
as a drop-in replacement for regular 3DGS, by swapping it for the
splatting rasterizer while limiting to 1 ray per pixel and integrating
RGB color only. We trained for 7k iterations and our method does not
have spherical harmonics; for details of the exact configuration used,
please see supplemental. Tab. 3 shows that our raytracer improves
training times and FPS performance over 3DGRT.

Table 3. Performance comparison between our raytracer and 3DGRT when
used as a drop-in replacement for 3DGS. Average across all MipNerf scenes
at different resolutions. Our method was run without spherical harmonics.

Training Time FPS PSNR (dB)
Downsampl.
3DGRT Ours Speedup 3DGRT Ours Speedup 3DGRT Ours
2 00:29:24 00:06:51 4.35% 26.77 49.93 2.34% 25.44 25.01
4 00:10:03 00:02:27 4.08% 75.49 143.93 2.43% 25.83 25.35
8 00:05:28 00:01:08 4.77x 139.09 248.75 2.24x 26.27 26.25

Editable Physically-based Reflections in Raytraced Gaussian Radiance Fields « 9

Reconstructed Environment

Input Training View

/-‘ INDIRECT
RECQUSTRUCTION

Fig. 13. Our method reconstructs the environment behind the camera with
a high enough degree of fidelity to produce realistic novel views of parts of
the scene never observed in the input images. This reconstruction is part of
the same scene and can be observed by simply turning the camera around.

5 LIMITATIONS AND CONCLUSION

We make an important step forward to allow truly disentangled,
physically-based reflections for radiance fields. The main limitation
of our method is the performance of the network used to extract
layers: we are confident that such approaches will keep improv-
ing and provide the quality needed. Another limitation is lack of
support for transparency. This requires determining how to esti-
mate transparency from images (including producing training data
and corresponding networks), and an efficient rendering method.
Full scene editing with shadows updates requires a solution with
(at least partial) relighting. Finally, improving image quality even
with perfect layers requires more accurate reconstruction of the re-
flected scene. These are all hard problems and exciting new research
directions.

In conclusion, we presented a new approach that allows real-time,
consistent specular reflection editing in radiance fields, enabled by
our diffuse/specular disentanglement and our support for multi-
bounce reflections. The key to our solution is the use of separate
supervision of the diffuse and specular layers of images, building
on learning-based predictors of such layers. We also show how to
provide stable training and several performance improvements to
Gaussian ray tracing that, taken together, allow real-time, consistent,
physically-based editing of reflections, and reconstruction of unseen
reflected objects.

ACKNOWLEDGMENTS

This research was co-funded by the European Union (EU) ERC
Advanced grant FUNGRAPH No 788065 and ERC Advanced Grant
NERPHYS No 101141721. Views and opinions expressed are however
those of the author(s) only and do not necessarily reflect those of
the EU or the European Research Council. Neither the EU nor the
granting authority can be held responsible for them. This research
was also supported by NSERC grant RGPIN-2020-04799 and the
Digital Research Alliance Canada. The authors are grateful to Adobe
and NVIDIA for generous donations, and the OPAL infrastructure
from Université Cote d’Azur.

REFERENCES

Zoubin Bi, Yixin Zeng, Chong Zeng, Fan Pei, Xiang Feng, Kun Zhou, and Hongzhi Wu.
2024. GS*: Efficient relighting with triple gaussian splatting. In ACM SIGGRAPH
Asia Conf.

Hugo Blanc, Jean-Emmanuel Deschaud, and Alexis Paljic. 2025. Raygauss: Volumetric
gaussian-based ray casting for photorealistic novel view synthesis. In IEEE/CVF

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

10 + Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Drettakis

Winter Conf. App. Comput. Vis.

Brent Burley. 2012. Physically-Based Shading at Disney. https://api.semanticscholar.
org/CorpusID:7260137

Krzysztof Byrski, Marcin Mazur, Jacek Tabor, Tadeusz Dziarmaga, Marcin Kadziolka,
Dawid Baran, and Przemyslaw Spurek. 2025a. RaySplats: Ray Tracing based Gaussian
Splatting. arXiv preprint arXiv:2501.19196 (2025).

Krzysztof Byrski, Grzegorz Wilczynski, Weronika Smolak-Dyzewska, Piotr Borycki,
Dawid Baran, Stawomir Tadeja, and Przemystaw Spurek. 2025b. REdiSplats: Ray
Tracing for Editable Gaussian Splatting. arXiv preprint arXiv:2503.12284 (2025).

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF:
Tensorial radiance fields. In Eur. Conf. Comput. Vis.

Jorge Condor, Sebastien Speierer, Lukas Bode, Aljaz Bozic, Simon Green, Piotr Didyk,
and Adrian Jarabo. 2025. Don’t Splat your Gaussians: Volumetric Ray-Traced
Primitives for Modeling and Rendering Scattering and Emissive Media. ACM Trans.
Graph. (2025).

Robert L. Cook and Kenneth E. Torrance. 1982. A Reflectance Model for Computer
Graphics. ACM Trans. Graph. 1, 1 (1982), 7-24.

Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun Cao, Li Zhang, and Yao
Yao. 2024. Relightable 3D gaussians: Realistic point cloud relighting with brdf
decomposition and ray tracing. In Eur. Conf. Comput. Vis.

Gonzalo Martin Garcia, Karim Abou Zeid, Christian Schmidt, Daan De Geus, Alexander
Hermans, and Bastian Leibe. 2025. Fine-tuning image-conditional diffusion models
is easier than you think. In IEEE/CVF Winter Conf. App. Comput. Vis.

Chun Gu, Xiaofei Wei, Zixuan Zeng, Yuxuan Yao, and Li Zhang. 2024. IRGS:
Inter-reflective gaussian splatting with 2D gaussian ray tracing. arXiv preprint
arXiv:2412.15867 (2024).

Yuan-Chen Guo, Di Kang, Linchao Bao, Yu He, and Song-Hai Zhang. 2022. NeRFReN:
Neural radiance fields with reflections. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Florian Hahlbohm, Fabian Friederichs, Tim Weyrich, Linus Franke, Moritz Kappel,
Susana Castillo, Marc Stamminger, Martin Eisemann, and Marcus Magnor. 2025.
Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency.
Comput. Graph. Forum (2025).

Paul S Heckbert. 1990. Adaptive radiosity textures for bidirectional ray tracing. In Proc.
17th Ann. Conf. Comp. Graph. Interac. Tech. 145-154.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2024. 2D
gaussian splatting for geometrically accurate radiance fields. In ACM SIGGRAPH
Conf.

Letian Huang, Jiayang Bali, Jie Guo, Yuangi Li, and Yanwen Guo. 2025. On the Error
Analysis of 3D Gaussian Splatting and an Optimal Projection Strategy. In Computer
Vision — ECCV 2024. Springer Nature Switzerland, Cham, 247-263.

Yingwengi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang,
and Yuexin Ma. 2024. GaussianShader: 3D gaussian splatting with shading functions
for reflective surfaces. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei Zhou,
Zexiang Xu, and Hao Su. 2023. TensolIR: Tensorial inverse rendering. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog.

Bingxin Ke, Anton Obukhov, Shengyu Huang, Nando Metzger, Rodrigo Caye Daudt, and
Konrad Schindler. 2024. Marigold: Repurposing diffusion-based image generators
for monocular depth estimation. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkiihler, and George Drettakis. 2023.
3D gaussian splatting for real-time radiance field rendering. ACM Trans. Graph. 42,
4 (2023), 139-1.

Georgios Kopanas, Thomas Leimkiihler, Gilles Rainer, Clément Jambon, and George
Drettakis. 2022. Neural Point Catacaustics for Novel-View Synthesis of Reflections.
ACM Transactions on Graphics 41, 6 (2022), Article-201.

Dmytro Kotovenko, Olga Grebenkova, and Bjorn Ommer. 2025. EDGS: Eliminating
Densification for Efficient Convergence of 3DGS. arXiv preprint arXiv:2504.13204
(2025).

Georgios Kouros, Minye Wu, Sushruth Nagesh, Xianling Zhang, and Tinne Tuyte-
laars. 2024. Unveiling the Ambiguity in Neural Inverse Rendering: A Parameter
Compensation Analysis. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Zhiyi Kuang, Yanchao Yang, Siyan Dong, Jiayue Ma, Hongbo Fu, and Youyi Zheng. 2024.
OLAT Gaussians for Generic Relightable Appearance Acquisition. In SSGGRAPH
Asia 2024 Conference Papers. 1-11.

Shuichang Lai, Letian Huang, Jie Guo, Kai Cheng, Bowen Pan, Xiaoxiao Long, Jiangjing
Lyu, Chengfei Lv, and Yanwen Guo. 2025. GlossyGS: Inverse Rendering of Glossy Ob-
jects With 3D Gaussian Splatting. IEEE Transactions on Visualization and Computer
Graphics (2025), 1-14. https://doi.org/10.1109/TVCG.2025.3547063

Junseo Lee, Seokwon Lee, Jungi Lee, Junyong Park, and Jaewoong Sim. 2024. GSCore:
Efficient Radiance Field Rendering via Architectural Support for 3D Gaussian Splat-
ting. In Proceedings of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 3 (La Jolla, CA, USA)
(ASPLOS ’24). Association for Computing Machinery, New York, NY, USA, 497-511.
https://doi.org/10.1145/3620666.3651385

Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Differentiable
monte carlo ray tracing through edge sampling. ACM Transactions on Graphics

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

(TOG) 37, 6 (2018), 1-11.

Zhaoshuo Li, Thomas Miller, Alex Evans, Russell H Taylor, Mathias Unberath, Ming-
Yu Liu, and Chen-Hsuan Lin. 2023. Neuralangelo: High-fidelity neural surface
reconstruction. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Zhibing Li, Tong Wu, Jing Tan, Mengchen Zhang, Jiaqi Wang, and Dahua Lin. 2025.
IDArb: Intrinsic Decomposition for Arbitrary Number of Input Views and Illu-
minations. In The Thirteenth International Conference on Learning Representations.
https://openreview.net/forum?id=uuef1IHP6X7

Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Selvakumar Panneer, and Nandita
Vijaykumar. 2023a. EnvIDR: Implicit differentiable renderer with neural environ-
ment lighting. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Ruofan Liang, Zan Gojcic, Huan Ling, Jacob Munkberg, Jon Hasselgren, Zhi-Hao Lin,
Jun Gao, Alexander Keller, Nandita Vijaykumar, Sanja Fidler, and Zian Wang. 2025a.
DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion
Models. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Ruofan Liang, Zan Gojcic, Huan Ling, Jacob Munkberg, Jon Hasselgren, Zhi-Hao Lin,
Jun Gao, Alexander Keller, Nandita Vijaykumar, Sanja Fidler, and Zian Wang. 2025b.
DiffusionRenderer: Neural Inverse and Forward Rendering with Video Diffusion
Models. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. 2023b. Gs-ir: 3d gaussian
splatting for inverse rendering. arXiv preprint arXiv:2311.16473 (2023).

Jiayue Liu, Xiao Tang, Freeman Cheng, Roy Yang, Zhihao Li, Jianzhuang Liu, Yi Huang,
Jiagi Lin, Shiyong Liu, Xiaofei Wu, et al. 2024. MirrorGaussian: Reflecting 3D
gaussians for reconstructing mirror reflections. In Eur. Conf. Comput. Vis.

Yuan Liu, Peng Wang, Cheng Lin, Xiaoxiao Long, Jiepeng Wang, Lingjie Liu, Taku
Komura, and Wenping Wang. 2023. Nero: Neural geometry and brdf reconstruction
of reflective objects from multiview images. ACM Trans. Graph. 42, 4 (2023).

Li Ma, Vasu Agrawal, Haithem Turki, Changil Kim, Chen Gao, Pedro Sander, Michael
Zollhofer, and Christian Richardt. 2024. SpecNeRF: Gaussian directional encoding
for specular reflections. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Stephen Robert Marschner. 1998. Inverse rendering for computer graphics. Cornell
University.

Jiarui Meng, Haijie Li, Yanmin Wu, Qiankun Gao, Shuzhou Yang, Jian Zhang, and Siwei
Ma. 2024. Mirror-3DGS: Incorporating mirror reflections into 3D gaussian splatting.
In IEEE Int. Conf. Vis. Comm. Image Proc.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ra-
mamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields
for View Synthesis. In Eur. Conf. Comput. Vis.

Nicolas Moenne-Loccoz, Ashkan Mirzaei, Or Perel, Riccardo de Lutio, Janick Mar-
tinez Esturo, Gavriel State, Sanja Fidler, Nicholas Sharp, and Zan Gojcic. 2024. 3D
Gaussian Ray Tracing: Fast Tracing of Particle Scenes. ACM Trans. Graph. 43, 6
(2024), 1-19.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. 2019. Mitsuba 2:
A retargetable forward and inverse renderer. ACM Transactions on Graphics (ToG)
38, 6 (2019), 1-17.

Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM Trans.
Graph. (August 2010).

Yohan Poirier-Ginter, Alban Gauthier, Julien Phillip, J-F Lalonde, and George Drettakis.
2024. A Diffusion Approach to Radiance Field Relighting using Multi-Illumination
Synthesis. Comput. Graph. Forum 43, 4 (2024).

Mike Roberts, Jason Ramapuram, Anurag Ranjan, Atulit Kumar, Miguel Angel Bautista,
Nathan Paczan, Russ Webb, and Joshua M Susskind. 2021. Hypersim: A photorealistic
synthetic dataset for holistic indoor scene understanding. In IEEE/CVF Conf. Comput.
Vis. Pattern Recog.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer.
2022. High-resolution image synthesis with latent diffusion models. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog.

Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jian
Zhang, Bin Zhou, Errui Ding, and Jingdong Wang. 2025. GIR: 3D Gaussian Inverse
Rendering for Relightable Scene Factorization. IEEE Transactions on Transactions on
Pattern Analysis and Machine Intelligence (2025).

Pratul P Srinivasan, Boyang Deng, Xiuming Zhang, Matthew Tancik, Ben Mildenhall,
and Jonathan T Barron. 2021. NeRV: Neural reflectance and visibility fields for
relighting and view synthesis. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Zhe Jun Tang and Tat-Jen Cham. 2024. 3IGS: Factorised tensorial illumination for 3d
gaussian splatting. In Eur. Conf. Comput. Vis.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and
Pratul P Srinivasan. 2022. Ref-NeRF: Structured view-dependent appearance for
neural radiance fields. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Dor Verbin, Pratul P Srinivasan, Peter Hedman, Ben Mildenhall, Benjamin Attal, Richard
Szeliski, and Jonathan T Barron. 2024. NeRF-casting: Improved view-dependent
appearance with consistent reflections. In ACM SIGGRAPH Asia Conf.

Ingo Wald, Nate Morrical, Stefan Zellmann, Lei Ma, Will Usher, Tiejun Huang, and
Valerio Pascucci. 2020. Using Hardware Ray Transforms to Accelerate Ray/Primitive

https://api.semanticscholar.org/CorpusID:7260137
https://api.semanticscholar.org/CorpusID:7260137
https://doi.org/10.1109/TVCG.2025.3547063
https://doi.org/10.1145/3620666.3651385
https://openreview.net/forum?id=uuef1HP6X7

Intersections for Long, Thin Primitive Types. Proc. ACM Comput. Graph. Interact.
Tech. 3, 2, Article 17 (Aug. 2020), 16 pages. https://doi.org/10.1145/3406179

Fangjinhua Wang, Marie-Julie Rakotosaona, Michael Niemeyer, Richard Szeliski, Marc
Pollefeys, and Federico Tombari. 2024. UniSDF: Unifying neural representations for
high-fidelity 3d reconstruction of complex scenes with reflections. In Adv. Neural
Inform. Process. Syst.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping
Wang. 2021. NeusS: Learning neural implicit surfaces by volume rendering for
multi-view reconstruction. In Adv. Neural Inform. Process. Syst.

Gregory]. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A ray tracing
solution for diffuse interreflection. SIGGRAPH Comput. Graph. 22, 4 (June 1988),
85-92. https://doi.org/10.1145/378456.378490

Qi Wu, Janick Martinez Esturo, Ashkan Mirzaei, Nicolas Moenne-Loccoz, and Zan
Gojcic. 2025. 3dgut: Enabling distorted cameras and secondary rays in gaussian
splatting. In Proceedings of the Computer Vision and Pattern Recognition Conference.
26036-26046.

Chen Xi, Peng Sida, Yang Dongchen, Liu Yuan, Pan Bowen, Lv Chengfei, and Zhou.
Xiaowei. 2024. IntrinsicAnything: Learning Diffusion Priors for Inverse Rendering
Under Unknown Illumination. arxiv: 2404.11593 (2024).

Tao Xie, Xi Chen, Zhen Xu, Yiman Xie, Yudong Jin, Yujun Shen, Sida Peng, Hujun
Bao, and Xiaowei Zhou. 2025. EnvGS: Modeling view-dependent appearance with
environment gaussian. In IEEE/CVF Conf. Comput. Vis. Pattern Recog.

Guangkai Xu, Yongtao Ge, Mingyu Liu, Chengxiang Fan, Kangyang Xie, Zhiyue Zhao,
Hao Chen, and Chunhua Shen. 2025. What Matters When Repurposing Diffusion
Models for General Dense Perception Tasks?. In Int. Conf. Learn. Represent.

Jason C Yang, Justin Hensley, Holger Griin, and Nicolas Thibieroz. 2010. Real-time
concurrent linked list construction on the GPU. In Comput. Graph. Forum, Vol. 29.
1297-1304.

Yuxuan Yao, Zixuan Zeng, Chun Gu, Xiatian Zhu, and Li Zhang. 2024. Reflective
Gaussian Splatting. arXiv preprint arXiv:2412.19282 (2024).

Keyang Ye, Qiming Hou, and Kun Zhou. 2024. 3D gaussian splatting with deferred
reflection. In ACM SIGGRAPH Conf.

Ze-Xin Yin, Peng-Yi Jiao, Jiaxiong Qiu, Ming-Ming Cheng, and Bo Ren. 2025. MS-NeRF:
Multi-Space Neural Radiance Fields. IEEE Trans. Pattern Anal. Mach. Intell. (2025).

Junyi Zeng, Chong Bao, Rui Chen, Zilong Dong, Guofeng Zhang, Hujun Bao, and
Zhaopeng Cui. 2023. Mirror-NeRF: Learning neural radiance fields for mirrors with
whitted-style ray tracing. In ACM Int. Conf. Multimedia.

Zheng Zeng, Valentin Deschaintre, Iliyan Georgiev, Yannick Hold-Geoffroy, Yiwei Hu,
Fujun Luan, Ling-Qi Yan, and Milo§ Hasan. 2024. RGB—X: Image decomposition and
synthesis using material- and lighting-aware diffusion models. In ACM SIGGRAPH
Conf.

Rui Zhang, Tianyue Luo, Weidong Yang, Ben Fei, Jingyi Xu, Qingyuan Zhou, Keyi
Liu, and Ying He. 2024. RefGaussian: Disentangling Reflections from 3D Gaussian
Splatting for Realistic Rendering. arXiv preprint arXiv:2406.05852 (2024).

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Free-
man, and Jonathan T Barron. 2021. NeRFactor: Neural factorization of shape and
reflectance under an unknown illumination. ACM Trans. Graph. 40, 6 (2021), 1-18.

Youjia Zhang, Anpei Chen, Yumin Wan, Zikai Song, Junqing Yu, Yawei Luo, and Wei
Yang. 2025. Ref-GS: Directional Factorization for 2D Gaussian Splatting. In IEEE/CVF
Conf. Comput. Vis. Pattern Recog.

Jingsen Zhu, Fujun Luan, Yuchi Huo, Zihao Lin, Zhihua Zhong, Dianbing Xi, Rui
Wang, Hujun Bao, Jiaxiang Zheng, and Rui Tang. 2022. Learning-based inverse
rendering of complex indoor scenes with differentiable Monte Carlo raytracing. In
ACM SIGGRAPH Asia Conf.

Editable Physically-based Reflections in Raytraced Gaussian Radiance Fields « 11

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.

https://doi.org/10.1145/3406179
https://doi.org/10.1145/378456.378490

12+ Yohan Poirier-Ginter, Jeffrey Hu, Jean-Francois Lalonde, and George Drettakis

Specular Diffuse Final Specular Diffuse

Final

Fig. 14. Disentanglement results of different methods on SHINY KITCHEN and SHINY LIVINGROOM. Inlays show that our method does not mix reflections into
diffuse. Note that in these results, our method uses ground truth input buffers and EnvGS uses ground truth normals.

EnVGS(net. normals) Our, S(net. inputs) EnVGS(net. normals) Ours(net. inputs) EnVGS(net. normals) Ours(net. inputs)
s : S BT = EE

. [\ X \

P <

- o 07/ ; S A 2
Fig. 15. Our method compared against EnvGS [Xie et al. 2025] on real scenes from the Neural Catacaustics dataset [Kopanas et al. 2022]. Qualitatively, we
achieve better disentanglement at the cost of lower visual fidelity in the final render. Note that the denoiser was only applied to the final image.

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.

	Abstract
	1 Introduction
	2 Related work
	3 Method
	3.1 Diffuse/Specular Separation for Physics-Based Reflections
	3.2 Optimizing a Unique Scene for Radiance Field Reflections
	3.3 Efficient Ray Tracer for Multi-Bounce Radiance Field Reflections
	3.4 A Dedicated Network to Infer Disentangled Layers

	4 Results and Evaluation
	4.1 Real-Time Editing
	4.2 Evaluation on Synthetic Scenes
	4.3 Evaluation on Real Scenes
	4.4 Comparing our Raytracer to 3DGRT

	5 Limitations and Conclusion
	Acknowledgments
	References

