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Fig. 1. Our method improves 3D reconstruction in unseen views, by leveraging the multi-view information contained in repetitive elements (the two windows
in this example). From le� to right, we compare Nerfbusters [Warburg et al. 2023], Bayes Rays [Goli et al. 2024], an improved version of 3D Gaussian
Spla�ing [Kerbl et al. 2023] described in Section 5.2, our method, and the ground truth novel test view of a real scene.

We leverage repetitive elements in 3D scenes to improve novel view syn-

thesis. Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS)

have greatly improved novel view synthesis but renderings of unseen and

occluded parts remain low-quality if the training views are not exhaustive

enough. Our key observation is that our environment is often full of repet-

itive elements. We propose to leverage those repetitions to improve the

reconstruction of low-quality parts of the scene due to poor coverage and

occlusions. We propose a method that segments each repeated instance in

a 3DGS reconstruction, registers them together, and allows information to

be shared among instances. Our method improves the geometry while also

accounting for appearance variations across instances. We demonstrate our

method on a variety of synthetic and real scenes with typical repetitive

elements, leading to a substantial improvement in the quality of novel view

synthesis.
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1 INTRODUCTION

Capturing real scenes from photos and allowing 3D navigation

has become widely accessible thanks to progress in novel view

synthesis using Neural Radiance Fields (NeRF) [Barron et al. 2022;

Mildenhall et al. 2020; Müller et al. 2022] and 3D Gaussian Splat-

ting (3DGS) [Kerbl et al. 2023]. However, good quality novel view

synthesis requires careful and exhaustive capture of multiple views

of a scene, and the visual quality of renderings from unseen or

occluded regions is typically very low. We focus on scenes that

exhibit repetitions: repetitions can be found everywhere, from urban

scenes (pillars), building facades (windows) and furniture (tables and

chairs) to decorative elements. We present a method that exploits

the information provided by a set of instances of the same object in

a multi-view capture to improve the visual quality of novel views.

Repetitions have received little attention in novel view synthe-

sis. Symmetry has been used to improve 3D reconstruction [Mitra

et al. 2013], and repetitions have been used for single-image recon-

struction [Cheng et al. 2023]. Rodriguez et al. [2018] presented a

solution to improve novel view synthesis for the restricted case of

instances in a plane. In addition, previous methods do not handle

the inevitable di�erences in appearance between instances. In con-

trast, we aim for a more general solution where repetitive elements

can be any 3D object, and appearance variations are handled. This

involves three important challenges. First, we need high-quality

3D segmentation of the instances. Second, we need high-quality

3D registration between instances. Finally, each instance usually

presents di�erences in illumination and appearance that need to be

accounted for.
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Given a base 3DGS reconstruction, our goal is to segment repeti-

tive objects in the scene, i.e. instances, and fuse them together into

a common and improved shared representation.

To address the above challenges, we �rst exploit learning-based

2D masks, and a single user click per instance, and then segment

each instance in 3D. For this we follow previous work that uses

contrastive learning [Cen et al. 2024; Choi et al. 2024, 2025; Gu et al.

2024; Kim et al. 2024; Ye et al. 2023; Ying et al. 2024] but show that

additional regularization and postprocessing are required to have

cleanly segmented 3D instances from a 3DGS reconstruction.

We next �nd per-instance rigid transformations to bring them all

to a common coordinate frame. Standard 3D point-cloud matching

methods are ill-suited to 3DGS data, which is noisy and does not

correspond well to an underlying geometry because it optimizes

image radiance rather than geometry. To overcome this problem we

exploit the ability of 3DGS to render additional high-quality views,

enabling the use of robust 2D image matching algorithms, which

we lift to 3D using depth provided by 3DGS.

Finally, we build a shared representation of a template for all

the instances by taking the union of all the 3D Gaussian primitives.

A �ne-tuning step allows gradients to �ow from each instance to

the shared representation, improving the overall reconstruction.

In particular, partially-occluded instances are completed based on

the visible instances. In addition low-quality geometry and appear-

ance caused by poor coverage in the capture are enhanced with

information from better-covered instances. We model di�erences

in appearance between instances using an o�set representation for

Spherical Harmonics (SH); we also show that this simple solution is

faster than more complex options such as a multi-layer perceptron

(MLP).

In summary, our contributions are:

• A shared representation and a �ne-tuning process that im-

proves overall reconstruction and novel view synthesis qual-

ity by using information from all instances.

• An improved 3D segmentation based on constrastive learning,

using additional regularization and post-processing.

• Introducing the use of novel view synthesis to enable robust

2D matching, which then allows 3D registration of the noisy

3D Gaussians of each primitive.

We evaluate our method on synthetic and real data with indepen-

dent test trajectories unseen during reconstruction. Our method

improves the overall quality of poorly captured or occluded regions

in scenes with repetitive elements, outperforming other generaliza-

tion solutions.

2 RELATED WORK

We build on novel view synthesis and in particular 3D Gaussian

Splatting (3DGS), segmentation, 3D registration, symmetries and

repetitions, and multi-illumination multi-view capture.

Novel view synthesis and Generalization. Our method strives to

improve the quality of novel views by exploiting repetitions. Neural

Radiance Fields (NeRF) [Barron et al. 2022; Mildenhall et al. 2020;

Müller et al. 2022] revolutionized novel view synthesis, permitting

high quality rendering of novel views, albeit at a high computation

cost for scene optimization and slow rendering. More recently 3D

Gaussian Splatting (3DGS) [Kerbl et al. 2023] has permitted much

faster optimization and rendering, resulting in widespread adoption

(see surveys [Chen and Wang 2024; Fei et al. 2024]).

Several methods attempt to improve novel view synthesis gener-

alization by introducing priors [Warburg et al. 2023], or quantifying

uncertainty [Goli et al. 2024]. Di�usion models have been used as

priors, typically for single or few-view use cases [Gao* et al. 2024;

Wu et al. 2024]. For 3DGS, LongLRM [Ziwen et al. 2024] achieves

impressive reconstruction and novel view synthesis quality with as

few as 32 views, but with signi�cant resource requirements (80Gb

GPU). We restrict generalization to repetitive elements, sidestepping

the need for expensive di�usion models.

Radiance Field Segmentation. The lack of large-scale segmented

3D datasets has inspired the use of 2D vision models to segment 3D

scenes. This creates the challenge of multi-view consistency, even

with recent video segmentation [Ravi et al. 2024].

Various authors [Kobayashi et al. 2022; Tschernezki et al. 2022;

Zhi et al. 2021] lift 2D class labels, or deep features [Caron et al.

2021; Radford et al. 2021], by augmenting the 3D representation with

auxiliary feature channels and optimizing them to match the 2D

signal via di�erentiable rendering. Segmentation is then obtained

via nearest neighbors in 3D feature space [Goel et al. 2023]. Such

feature distillation has been extended to 3DGS [Lee et al. 2024; Qin

et al. 2023; Qiu et al. 2024; Zhou et al. 2024].

Recent approaches propose to directly distill 2D masks [Bhalgat

et al. 2023; Fan et al. 2023]. The lack of association between masks

from di�erent views is resolved in 3D via contrastive learning, push-

ing rendered features closer together when they belong to the same

mask in an image and farther otherwise. Many authors [Cen et al.

2024; Choi et al. 2024, 2025; Gu et al. 2024; Kim et al. 2024; Ye et al.

2023; Ying et al. 2024] extend this idea to 3DGS segmentation. Such

methods often have residual artifacts and we propose additional

regularization and postprocessing that signi�cantly improve results.

Registration. We refer the reader to a recent survey [Huang et al.

2021]. Our speci�c sub-problem is the registration of two clouds

of Gaussian primitives, with varying density, partial overlap, large

pose variation and noise. Because 3D Gaussians are optimized to

reproduce images, they are not necessarily located on the surface;

density variation occur across instances depending on their coverage

and projected size in the training views. Since our Gaussians are

not located on the geometric surface, 3D descriptors [Johnson and

Hebert 1999; Qi et al. 2017; Rusu et al. 2009; Wang and Solomon

2019] would yield poor features.

We will exploit the ability of 3DGS to render realistics images

to enable the use of 2D image matching. We also use the ability

of 3DGS to provide depth to lift the matches to 3D. We build on

recent work on 3D reconstruction and 2D matching, in particular

DUSt3R [Wang et al. 2023] and MASt3R [Leroy et al. 2024]. Due to

its robustness under extreme pose variations, we adopt MASt3R and

demonstrate its usefulness in building a registration pipeline for

3DGS, alongside more traditional tools such as PnP-RANSAC [Fis-

chler and Bolles 1981; Lepetit et al. 2009].
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a) Base 3DGS b) Instance segmentation c) Instance Registration d) Shared optimization
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Fig. 2. Overview of our method. (a) We start with a base 3DGS reconstruction, then (b) use SAM-HQ masks and a user click to identify repetitive
instances, and train contrastive features to perform instance segmentation in 3D. (c) To register the instances, we first render additional views using 3DGS for
each instance. A�er selecting the best pairs of views with a fast 2D matcher, we find robust 2D matches using MASt3R, which we li� to 3D with the depth
obtained from 3DGS. Finally, we use a PnP-RANSAC solver to register the instances given the 2D-3D correspondences. (d) A finetuning step for our shared
representation follows, allowing gradients to flow from the instances to the template. Once our method is complete, we can replace the instances with the
optimized template, with significant improvement in visual quality.

Symmetry, self-similarities, repetitions. The concept of symmetry

and repetitions has received steady attention in Computer Graphics,

with some approaches focusing on detecting symmetry [Je et al.

2024; Mitra et al. 2006, 2013] and others on exploiting it for down-

stream applications. In this paper, we o�oad the problem of sym-

metry detection to the user, who indicates repeating elements with

a few clicks, and focus on how to best exploit symmetry to im-

prove novel-view synthesis. Previous work has shown the bene�ts

of using symmetry for model compression [Zheng et al. 2010], scan

consolidation [Mitra et al. 2006], symmetric triangulation [Podolak

et al. 2007] and model completion [Thrun andWegbreit 2005]. In the

latter, the authors propose to use partial symmetries to reconstruct

missing regions in 3D scans. Repetitions have been used to compute

structure and perform inverse rendering for a single image [Cheng

et al. 2023], including in a generative context [Zhang et al. 2023].

Rodriguez et al. [2018] use instances to improve reconstruction as

we do, but are restricted to a planar con�guration, and only test

window instances on a facade. Similarly, we �ll in missing details

in one instance by borrowing from the other repetitions for 3DGS

reconstructions. Naively copying and pasting Gaussians would lead

to artifacts because each repetition is observed under di�erent illu-

mination conditions. We thus tackle a multi-viewmulti-illumination

reconstruction problem: geometry and surface properties are shared

among instances, but illumination conditions vary.

Multi-view multi-illumination reconstruction. Most novel view

synthesis methods assume that the scene has been captured under

a single lighting condition. There have been several attempts to

model changing conditions, for example NeRF-W [Martin-Brualla

et al. 2021] that encodes varying appearance in an additional fea-

ture vector for NeRF. Speci�c methods have been developed to

capture scenes under multiple illumination conditions, typically

using specialized “dome-like” equipment [Debevec et al. 2000], but

also low-end cellphone capture with a �ash [Bi et al. 2020]. Recently,

3DGS was extended for relighting [Poirier-Ginter et al. 2024], us-

ing a di�usion-model based prior to augment a single illumination

capture to multi-illumination.

In our case, each instance can be seen as the same object illumi-

nated under a di�erent lighting con�guration; however, the lighting

variations are often less severe, since all instances are in the same

overall scene. This allows us to represent appearance variation with

spherical harmonics o�sets.

3 OVERVIEW

We take as input a multi-view image dataset of a scene that con-

tains multiple instances of the same element. Our method (Figure 2)

consists of three main stages. First, we perform 3D instance segmen-

tation (Sec. 4.1), with an extended version of 3DGS, where an extra

feature per Gaussian is trained using contrastive learning. After

segmentation, a user manually selects which instances should be

grouped together by simply clicking on them. This requires one

click per instance in only one image. Second, we propose a method

to merge instances into a single coordinate system (Sec. 4.2). To

deal with the geometric ambiguity of 3DGS, we introduce a match-

ing procedure that exploits the novel view synthesis capabilities

of 3DGS to generate additional viewpoints. These new views en-

able robust 2D matching algorithms, which we exploit to do 2D-3D

correspondences and 3D registration. Third, we train a shared rep-

resentation for all instances using common geometry but individual

appearance parameters (Sec. 4.3). Each instance is seen from dif-

ferent viewpoints in the input images used during optimization.

Our representation allows gradients to �ow from each instance to

the template using the rendering loss from each such viewpoint.

This improves the overall reconstruction quality for each instance

despite occlusions or lack of detail in di�erent view of each instance

used in training.

4 METHOD

4.1 3D Instance Segmentation

Segmenting objects in 3D in a 3DGS scene is challenging. 3D Gauss-

ian primitives do not strictly model object geometry: sometimes they

are placed in space around (but not on) a surface, or are large with

low opacity, which allows 3DGS to model speci�c appearance in the

input photos. Inspired by previous work [Bhalgat et al. 2023; Fan

3
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et al. 2023], we handle this task using contrastive learning [Radford

et al. 2021] with 2D masks, assigning a feature to each Gaussian.

To segment each training view, the user provides a text query

such as “pillar” to GroundingDINO [Liu et al. 2024], which outputs

a bounding box per instance, fed to SAM-HQ [Ke et al. 2023], which

in turn outputs a 2D mask per instance. We call “background” the

complement of the union of the masks in the training view, i.e. the

union of all pixels not containing the text query. We train using a

cosine distance for the pull and push losses. The push loss includes

a margin of 0.3. We add extra loss terms for the hard cases (distance

between features larger than 0.5). The pull loss is weighted by the

ratio of negative-to-positive pairs to counter the imbalance due to

more negative pairs.

During contrastive learning, the trainable per-Gaussian features

are rasterized into per-pixel features. To train the features, pairs of

pixels are sampled in a given input image and undergo the following

contrastive loss. If the pixels belong to the same 2D mask, their

features are pulled together. If they belong to di�erent masks, their

features are pushed apart.

However, we observe three main challenges in applying con-

trastive learning to 3DGS: 1) low-opacity Gaussians under the sur-

face of objects do not receive enough gradients because they are

occluded by other Gaussians, 2) large Gaussians that are shared

among di�erent objects get con�icting gradients and 3) several

Gaussian primitives, typically at the border between an instance

and the background are “left behind”, resulting in visual artifacts

and harming the subsequent optimization (Sec. 4.3).

Regularization and Optimization. To address the �rst two chal-

lenges, we add ℓ1 regularization terms on the opacity and the scaling

during 3DGS training to discourage both phenomena

_opacity
1

#

#∑

8=1

o8 + _scale
1

#

#∑

8=1

s8 , (1)

where # is the number of Gaussian primitives.

After 3DGS training is complete, we train the contrastive features.

Contrastive methods are sensitive to the number of pixels sampled

per mask to form positive and negative pairs. Therefore, we uni-

formly sample "D pixels in the image, so larger masks get more

samples, and"B pixels per mask so even small masks get enough

samples to form pairs (we set"D = "B = 4096).

We include a regularization term to encourage the rendered fea-

tures f̂ to be unit norm, similar to [Cen et al. 2024].

Interactive segmentation. Once the features are trained, di�erent

instances can be segmented based on the similarity of their fea-

tures. For each instance @, to form a query feature f@ , the user clicks

inside the mask of the instance in any training view, and we se-

lect the rendered feature corresponding to the clicked pixel. We

perform the 3D segmentation by �nding the closest Gaussians in

the scene with a simple threshold in the contrastive feature space.

Thus, the segmented instance I@ for query f@ is simply the set of

Gaussians with contrastive features f8 that verify 3 (f8 , f@) ≤ g . We

set g = 0.1 in our experiments. Since this only requires one click

per instance from the user, this interaction is fast and low-e�ort

(please see supplementary video). At the end of this stage, we have

a set of instances I1, . . .I" formed by their corresponding Gaussian

primitives for each object of interest. We compute corresponding

2D masks {M@,9 |1 ≤ @ ≤ ", 1 ≤ 9 ≤ #, } of the @-th instance in

the 9-th training view by comparing the rendered features in the

training viewpoints with f@ . The resulting masks are better than

the ones produces by SAM-HQ because they aggregate information

from all views [Siddiqui et al. 2023].

Post-processing. This process can leave some residual Gaussians

out of the segmented instances contributing to the appearance of the

instance and the background Fig. 6 (left). It is important to remove

them from the reconstruction of the background otherwise each

instance will get slightly di�erent gradients, hurting the sharing of

information amongst them. We �lter them out with a space carving

approach. To decide if a Gaussian primitive should be removed from

the background, we check if at least one of the following three

conditions is met in every train image. First, the center projects

inside the 2D masks {M@,9 } of the instances. Second, the center

projects outside the image boundary. Third, the center is not visible

in the current camera (this includes, for example, primitives behind

the camera). If at least one of the conditions is met for all training

views, the Gaussian a�ects the instance’s rendering and is removed

from the scene.

In Fig. 6, we show how the regularization in Eq. 1 and the post-

processing step signi�cantly improve overall visual quality.

4.2 Novel View Synthesis for Instance Registration

We now have " segmented instances, which we need to register

into a common coordinate system with a per-instance rigid transfor-

mation, i.e. a rotation ' and a translation) . We choose the instance

that has the largest number of Gaussian primitives as the template

instance I) .

We have found purely geometric registrations inapplicable be-

cause 3D Gaussians are optimized to reproduce the appearance of

the scene but not necessarily its geometry. In particular, several

Gaussians behind the surface often contribute to the �nal appear-

ance, and the instances have di�erent spatial density of Gaussian

primitives, e.g. very detailed regions have much smaller Gaussians

than �at regions. Naive 3D point cloud registration does not work

very well, as we show in Figure 7.

On the other hand, Gaussian primitives represent a radiance �eld

that allows high quality novel view synthesis, which allows us to

leverage 2D image matching. These methods can enable reliable

instance registration in 3D if provided with suitable views of the

instances. We use novel view synthesis to render such views. The

estimation of the pose of a reference object from an image typi-

cally has two steps: a coarse estimation stage, and a re�nement

step [Nguyen et al. 2024].

Our registration process for coarse pose estimation has four steps:

1) Rendering of a dense set of views of each instance from all direc-

tions 2) Fast matching of all pairs of all views to �nd a reduced set

of : pairs between each instance I8 and the template I) , 3) Dense

matching of : pairs of views of I8 and I) to �nd the best such

4
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pair, 4) Lifting the 2D matches of the chosen pair to 3D and using a

PnP-RANSAC solver to �nd the transformation of I8 to I) .

Rendering dense set of views for each instance. We sample 25 cam-

eras pointing towards the center, on a virtual sphere around each

instance, by regularly sampling 5 azimuths and 5 elevations. Since

we have a base 3DGS representation of the scene, we use these

cameras to generate novel views of each instance.

Fast matching to choose : pairs of views. Next, we quickly �nd

candidate pairs of views where the source instances I8 and target

(template) I) are seen from similar points of view. For this, we

use a fast matcher [Potje et al. 2024], and select the top : pair of

source-target views with the most matches as candidates for the

next stage. We set : to 10 in our experiments.

Dense matching to �nd the best pair. Once we have the top :

pairs of views, we �nd dense 2D matches with MASt3R [Leroy et al.

2024], a transformer-based solution more robust than fast match-

ing but of higher computational cost, which makes it prohibitively

expensive to run directly on all pairs. We denote these matches

%2D = {G1 . . . G# } and &2D = {~1 . . . ~# }. In pixel coordinates, the

points G8 and ~8 are of the form (D8 , E8 ).

Lifting to 3D and Perspective-n-Point solver. We backproject these

2D points using the depth�8 obtained from 3DGS, (following [Kerbl

et al. 2024]), the intrinsics matrix K and extrinsics Mcam. We obtain

the corresponding 3D point matches %3D = {?1 . . . ?# } and &3D =

{@1 . . . @# } expressed in world coordinates:

?8 = �8McamK
−1 (D8 E8 1)

) (2)

Back-projected depth tends to be closer to the geometric surface

than the Gaussian primitives themselves because depth is computed

as a weighted average of the Gaussian centers, some of which are

in front of the surface and some of which are behind.

Given one of the : pairs of views, we �nd the rigid transformation

between the source and the target Gaussians using Perspective-n-

Point (PnP) on the 2D-3D correspondences between the source 3D

points %3D and the target 2D keypoints &2D. The PnP-RANSAC

solver outputs the camera-to-world transformation corresponding

to the camera that sees the source 3D points %3D from the target

camera viewpoint. We run this robust PnP-RANSAC solver for each

pair and keep the transformation with the largest number of inliers.

Our pose re�nement consist of two steps: �rst we run ICP [Zhang

1994] on the Gaussian centers, initialized with the coarse initial-

ization of the pose, then we further re�ne the pose by adding its

parameters to the subsequent 3DGS optimization.

For symmetric objects (e.g. the pawns in the Chessboard scene),

the matching procedure �nds correspondences based on appearance.

For both symmetric and textureless objects, multiple rigid transfor-

mations are valid depending on the type of symmetry. In this case,

�nding one of them during registration is enough to �netune the

shared representation.

4.3 Shared Representation and Optimization

Now that we have the transformations of all the instances into a

single template space, we can create a shared representation for

the repetitive scene elements. Our goal for this representation is

twofold. First, we want a geometry representation that shares the

information provided by each instance, thus signi�cantly improving

the 3DGS reconstruction quality for all instances. In particular, we

want to complete instances with occluded parts using the informa-

tion from the visible instances, and improve low-quality regions

by propagating �ne-grain details from high-quality parts. Second,

we want our representation to handle the di�erences in appearance

mainly due to di�erent illumination.

Once we have all the transformations of instances I8 to the tem-

plateI) , we create the initial shared representation by placing all the

instances in a common coordinate system and taking their union.

For each Gaussian primitive, all parameters are shared across

instances of the same object, e�ectively constraining the geometry

of all instances with multi-view information from all instances.

To handle the di�erences in appearance, we decompose the SH

coe�cients of each primitive into a shared component and an o�set

term for each instance:

c
ℓ<

= _cℓ<shared + (1 − _)cℓ<o�set (3)

where ℓ is the degree,< the order of the coe�cient, and _ a mixing

weight set to 0.8. The o�set parameters cℓ<
o�set

represent the indi-

vidual di�erences between instances, typically due to illumination,

and we encourage them to be small with an ℓ1 penalty.

Optimization. We replace each instance with a reference to the

shared representation that undergoes the per-instance geometric

transform and SH o�set. As a result, we can propagate gradients

from all instances to the shared representation. We optimize the

shared geometry and SHs with gradient descent. For example, if I1
and I2 are seen from opposite sides in template space, the shared

representation will bene�t from the information each instance pro-

vides and be well reconstructed from both sides. We jointly optimize

over the pose to re�ne its estimation from the previous step.

5 DATA & EVALUATION

We implemented our method building on the original codebase of

3DGS [Kerbl et al. 2023]. Our source code and data are available at

https://repo-sam.inria.fr/nerphys/splat-and-replace.

5.1 Synthetic & Real Scenes

We evaluate our method on four synthetic scenes and four real

scenes, the former allowing more precise quantitative evaluation.

For each scene, we optimize the reconstruction over the training

sequence and evaluate over a held-out test sequence. For synthetic

scene, Office, Temple, Chessboard and Classroom, we render

200 images for training and 50 for testing. Our test views are far

from the training views, and are not used in training. The image size

is 1370 × 912, rendered using Blender’s Cycles [Community 2018],

along with ground truth masks and depth maps, that we use in our

quantitative evaluation. We use the following repetitive elements

for each scene: 3 tables and 9 chairs for Office, 13 columns for

Temple, 5 desks for Classroom, 2 rooks, 2 knights, 2 bishops, and 8

pawns for Chessboard.

For each real scene, House, MeetingRoom, Pillars and Facade,

we run COLMAP [Schonberger and Frahm 2016] on both the train

and test sequences together to obtain a coherent calibration, then
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Table 1. �antitative evaluation.We report average PSNR, SSIM, LPIPS, and KID across test views on our synthetic and real dataset. We compute the
metrics both in the complete images and in the masked regions where replacement of instances took place to isolate the e�ect of our method. For easier
readability, we color-code results as a linear gradient between worst and best

Synthetic Synthetic (masked) Real Real (masked)

PSNR↑ SSIM↑ LPIPS ↓ KID↓ PSNR↑ SSIM↑ LPIPS ↓ KID↓ PSNR↑ SSIM↑ LPIPS ↓ KID↓ PSNR↑ SSIM↑ LPIPS ↓ KID↓

Nerfbusters 19.48 0.690 0.464 0.4185 17.97 0.605 0.219 0.2098 19.26 0.757 0.422 0.3017 17.62 0.687 0.138 0.1827

BayesRays 19.50 0.655 0.418 0.3018 18.20 0.573 0.223 0.2242 22.05 0.779 0.385 0.1215 21.97 0.743 0.123 0.0837

Nerfacto 20.18 0.683 0.405 0.2288 19.37 0.607 0.215 0.1694 22.43 0.803 0.368 0.1303 21.54 0.771 0.114 0.0765

3DGS 23.37 0.800 0.266 0.1808 22.78 0.761 0.139 0.1607 22.57 0.849 0.273 0.0974 21.87 0.798 0.089 0.0766

3DGS* 24.41 0.843 0.236 0.1389 23.02 0.778 0.119 0.1076 22.59 0.842 0.273 0.0994 21.91 0.799 0.090 0.0749

Ours 27.62 0.897 0.163 0.0316 27.54 0.887 0.063 0.0097 24.18 0.868 0.248 0.0483 24.63 0.847 0.068 0.0348

exclude the SfM points for which the test views were used for tri-

angulation from the 3DGS initialization. We compute monocular

depth using Depth-Anything-v2 [Yang et al. 2024] for depth supervi-

sion, and the segmentation masks using GroundingDINO [Liu et al.

2024] and SAM-HQ [Ke et al. 2023]. We use the following repetitive

elements for each scene: 2 windows for House, 4 windows and 4

railings for Facade, 6 chairs and 3 tables for MeetingRoom, and 4

pillars for Pillars.

We also include one scene from ScanNet++ [Yeshwanth et al.

2023] and two scenes from DL3DV [Ling et al. 2024] with repetitive

elements (chairs).

5.2 Evaluation

Baselines. We compare with the vanilla 3DGS [Kerbl et al. 2023],

and an improved version, denoted 3DGS*, using monocular depth

regularization, exposure adjustment from [Kerbl et al. 2024] and

our proposed opacity and scale regularization for the segmentation

(see Sec. 4.1). We additionally compare with Nerfbusters [Warburg

et al. 2023] and Bayes’ Rays [Goli et al. 2024], which both aim at

better generalization by measuring uncertainty in novel views and

using it to remove �oaters. Finally, Nerfacto [Tancik et al. 2023] is a

strong NeRF-based baseline that trades o� speed and quality, and is

also the underlying model that Nerfbusters and Bayes’ Rays use.

Qualitative Evaluation. We show di�erent unseen test views in

Fig. 4 for real scenes, Fig. 3 for synthetic scenes, and Fig 8 for Scan-

Net++/DL3DV. Our reconstruction, based on a shared representa-

tion for repetitive elements, shows better overall appearance for the

repetitive objects. For instance, in Office scene of Fig. 3, the chairs

and table have severe occlusion in the training views, leading to

poor reconstruction by the baselines. In contrast, our shared rep-

resentation incorporates the information from visible instances to

improve the reconstruction.

Zooming In.Our method can also render detailed zoomed-in novel

view of objects that are seen from afar in the training sequence, if

one of its repetition is seen from up close. We show this in Fig. 5,

where the reconstruction of the bust in the background is improved

using the bust in the front. Our method removes artifacts and adds

the �ne-grain details that were missing in the 3DGS* reconstruction,

due to this instance being captured from far away.

Quantitative Evaluation. Our quantitative results are summarized

in Table 1, on the synthetic and real scenes. We report the standard

reconstruction error metrics PSNR and SSIM [Wang et al. 2004],

and the perceptual metric LPIPS [Zhang et al. 2018]. In addition, we

compute KID [Bińkowski et al. 2021] to compare the distribution of

rendered and ground truth views, which is typically used to eval-

uate the overall realism of rendered images. We compute metrics

on the full rendered test views, as well as on the masked regions

corresponding to repetitions to isolate the impact of our method on

the repetitive elements. Our visual improvement translates directly

to the quantitative results, where we improve on all metrics by a

large margin. Most importantly, on the real scenes, our approach

improves by 1.59 dB the PSNR compared to the second-best per-

forming method and 2.72 dB if only considering the masked region

with repetitions. For the ScanNet++/DL3DV scenes we obtain an

average improvement of 1.28 dB in PSNR in the masked regions.

5.3 Analysis

Segmentation. In Fig. 6, we qualitatively ablate our opacity and scale

regularization (see Eq. 1) and our space carving post-processing.

As shown on the left, without the opacity and scale regulariza-

tion, many Gaussian primitives fail to meet the contrastive features

threshold, and remain where the object was. Our regularization

reduces the number of trailing Gaussians (middle) but some remain

at the border of the object. We hypothesize that they do not pass

the contrastive features threshold because they can contribute both

to the appearance of the object and to the background, being at

the border. Our space carving approach successfully removes them

(right), achieving a clean segmentation.

Registration.We compare our registration procedure with a global

registration approach based on 3D features, FPFH [Rusu et al. 2009]

and a RANSAC procedure to register the two point clouds based

on matching the features. Fig. 7 showcases the limitations of this

approach in the context of 3DGS, where the point cloud data is very

noisy and not concentrated only on surfaces. By replacing each

instance with the union of its registered repetitions, we observe

that the registered instances for the chair and tables are not aligned.

This is con�rmed by our quantitative analysis in Table 3, where we
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Fig. 3. �alitative evaluation on synthetic scenes. Each column corresponds to a di�erent scene (Temple, Classroom, Chessboard, and Office), and each
row shows results from di�erent methods: Nerfbusters [Warburg et al. 2023], Bayes’ Rays [Goli et al. 2024], 3DGS* [Kerbl et al. 2023], Ours, and the Ground
Truth.

measure the angular error of the alignment on the synthetic scenes.

Our method averages a half-degree error, while [Rusu et al. 2009]

fails with 50 degrees of error. We also ablate the main components of

our registration approach. Using the train views instead of sampling

new views in our virtual sphere degrades the performance by 4 de-

grees. Indeed, the train views cannot ensure �nding a pair of views

from a similar perspective and roughly from the same distance,

which makes 2D matching harder for MASt3R. We also ablate the

re�nement step showing that performances degrades by 5 degrees

without ICP. We also ablate the dense matching with MASt3R using

SIFT [Lowe 2004] and SuperPoint [DeTone et al. 2018] as alterna-

tives. SuperPoint failed in the Temple scene, we report the average

on the other synthetic scenes. On real scenes, SuperPoint also failed

in Pillars, while SIFT failed in Facade andMeetingRoom. These

failures emphasize the need for a robust matcher like MASt3R.

Shared Representation.A key element of the shared representation

is its ability to adapt to the speci�c appearance of each instance

via the SH o�sets while aggregating information with a shared SH

component. We report our ablations in Table 2 on synthetic scenes.

If no SH o�sets are used, the shared representation cannot adapt

to each instance and learns a suboptimal appearance. On the other

hand, when no shared SHs are used, the representation does not
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Fig. 4. �alitative evaluation on real scenes. Each column corresponds to a di�erent scene (MeetingRoom, Pillars, and Facade), and each row shows
results from di�erent methods: Nerfbusters [Warburg et al. 2023], Bayes’ Rays [Goli et al. 2024], 3DGS* [Kerbl et al. 2023], Ours, and the Ground Truth.
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Train view 3DGS* Ours

Fig. 5. Zoom-in. Our method improves the reconstruction of the bust in
the background, allowing for a successful close-up shot (middle and right).
This happens because a repetition of the bust is seen up-close in the training
views, benefiting the shared representation (le�).

Fig. 6. Segmentation ablation. Without opacity and scale regularization
or post-processing (le�) more gaussians are le� over. Using the regular-
ization (without post-processing) shows a reduced number of remaining
gaussians (middle). Our complete solution with both regularization and
post-processing produces the cleanest results (right) .

Fig. 7. Registration comparison. We compare our registration scheme
(right) with FPFH [Rusu et al. 2009] on the Gaussian primitives (le�). We
replace each instance by the union of all its registered repetitions. Note that
the table and chair both have two modes for their pose for FPFH, while
with our registration they are aligned. This is an intermediary visualization
of our method, a�er which the shared representation is optimized with
gradients flowing from all the repetitions.

aggregate the information from all instances e�ectively, resulting

in degrading quality, and lower PSNR.

We also experimented with a coordinate-basedMLP shared across

instances, that takes as input a Gaussian primitive position in the

shared template, the rigid transformation of the instance, the view-

ing direction and the SHs in the base 3DGS reconstruction for this

primitive, and outputs the RGB color of the gaussian primitive. We

observed similar quality but found it more than one and a half times

slower. Additionally, in this representation, the re�ectance’s shared

component and the instance-speci�c components are not disentan-

gled.

Computational Cost. Our method extends a base 3DGS representa-

tion, requiring additional training time for contrastive features and

shared representation �netuning, similar to prior 3DGS extensions.

We provide a time breakdown for each step with our default setup:

(i) 3DGS: 22min, (ii) Contrastive features: 21min, (iii) 3D Segmenta-

tion: 19sec, (iv) Registration: 123sec, (v) Finetuning: 51min.

Table 2. Shared representa-

tion ablation.We report av-
erage PSNR across test views
on two synthetic scenes. We
also include average training
iterations per second.

PSNR ↑ it/s ↑

SHs 27.33 2.6

w/o o�set 26.63 2.6

w/o shared 25.19 2.6

MLP 27.34 1.5

Table 3. Registration comparison and ab-

lation. On the synthetic dataset, we report
mean absolute error (MAE) for the predicted
rotation R (geodesic distance in degrees) and
the translation vector t. † Both ablations fail
in some real scenes. SIFT also fails in Temple,
which we exclude to compute the metrics.

MAE(R) ↓ MAE(t) ↓

Ours 0.490 0.065

w/o Virtual view 4.367 0.204

w/o ICP 5.455 0.114

w/ SIFT† 0.379 0.059

w/ SuperPoint† 0.458 0.075

FPFH [Rusu et al. 2009] 50.58 2.547

w/o ICP 66.94 2.606

5.4 Limitations & Future Work

A natural limitation of our method is given by the number of repeti-

tions in the scene and the variability they show. Our method bene�ts

the most when several objects are seen from di�erent points of view:

this provides a stronger signal for our shared representation. How-

ever, our method cannot improve the background, and some artifacts

remain in the test views as a result. Also, the identi�cation of the

repetitive elements in a scene require user interaction.

Our method is limited by strong changes in illumination in the

scene (for example, strong highlights in specular surfaces), which

produce pronounced di�erences in appearance among instances

of the same object. Scenes with uniform illumination are easier to

handle with our method. Strong di�erences in appearance are still

challenging to model and we leave their specialized treatment for

future work.

As discussed in Sec 5.3, our method requires additional training

for the contrastive features and the shared representation. Con-

trastive features can be trained in 4 min (1k iterations) instead of

21 min (5k), with minimal performance di�erence (0.969 vs. 0.966

mAcc, 0.965 vs. 0.963 mIoU). Furthermore, we can reduce �netun-

ing iterations from 7k to 4k (29min) and keep the performance

(PSNR=27.62@7k vs PSNR=27.63@4k in synthetic scenes). Recent

advances like Taming 3DGS [Mallick et al. 2024] should reduce the

cost of contrastive training and �netuning.

An interesting direction for future work is to leverage the shared

representation to reduce the memory requirements of 3DGS: if #

instances can be represented with a single and compact shared repre-

sentation, the total number of Gaussians required for all instances is

reduced. Here, the major challenge is how to encode the appearance

of each instance in a compact representation.

Another promising direction is improving inverse rendering with

our shared representation. A direct extension would be to also share
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Fig. 8. �alitative evaluation on real scenes from ScanNet++ and DL3DV Each column corresponds to a di�erent scene (fist column from Scan-
Net++ [Yeshwanth et al. 2023], second and third from DL3DV [Ling et al. 2024]), and each row shows results from di�erent methods: 3DGS* [Kerbl et al. 2023],
Ours, and the Ground Truth.

the same material parameters of a BRDF. The shared representa-

tion would receive multi-illumination information for all instances,

helping material and illumination disentanglement.

6 CONCLUSIONS

We show that repetitions in 3D scenes can be leveraged to improve

reconstruction and novel view synthesis. After an initial 3DGS re-

construction, our method detects and fuses the multiple occurrences

of a given object into a shared representation with common geome-

try and base appearance, while individual appearance is modeled

as an o�set for each instance. Then, each instance is replaced with

this representation. Our key insight is that this shared representa-

tion and the o�sets can be jointly optimized using all information

available in the scene for that object, which improves the geometry

and appearance for all instances.
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