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1 ADDITIONAL DETAILS

In this supplemental document we present additional details on the

method and its implementation.

We train 3DGS for 30K iterations using depth regularization and

exposure adjustment [Kerbl et al. 2024], and also the opacity and scal-

ing regularization. During this phase we also optimize the exposure

adjustment for the test views. Following 3DGS Monte Carlo [Kher-

admand et al. 2024], we disable the opacity reset.

For contrastive learning, we add a feature vector of dimension

3 = 16 to each Gaussian, and train them using the contrastive loss

for 5K iterations while keeping the other attributes frozen. At each

iteration, for an image with " masks (including the background

mask), we sample"D = 4096 pixels uniformly in the image so larger

masks get more samples. We also sample min{3,
"B

"
} pixels in each

mask, for a total of"B = 4096 pixels in the image, to ensure small

masks get enough pixels to form positive and negative pairs. We

show an example of masks and learned features in Fig. 1.

For the 2Dmatching, we use the recently introducedMASt3R [Leroy

et al. 2024] due to its remarkable capabilities to handle strong view-

point changes. After 3D segmentation, we render the segmented

instances and apply MASt3R to the pair of images being considered

for matching. We lift the 2D matches to 3D using the expected termi-

nation depth of the segmented instance. The expected termination

for a ray r is de�ned as x4 = r

(

∑

#

8=1
)8U8

)

, where U8 is the blending

weight and )8 the transmittance [Kerbl et al. 2023]. Since the esti-

mated depth is not fully reliable at edges, we apply a 5x5 dilation

kernel and discard outliers with a median absolute deviation test

based on z-scores with threshold 3.5 [Iglewicz and Hoaglin 1993]
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Fig. 1. Contrastive features visualization. Example masks (le�) used
to learn contrastive features, alongside the first three components of the
resulting contrastive features (right).

We optimize our shared representation for a total of 7k iterations,

gradually adding spherical harmonic bands every 1k iteration. Den-

si�cation and pruning are enabled after 500 iterations until 5000

iterations. During �netuning, we also improve the rigid transforma-

tion by optimizing a 9D representation of the rotation [Zhou et al.

2019] and the translation vector using Adam [Kingma and Ba 2015]

with learning rate of 10−3 annealed to 10
−4. More precisely, in the

9D representation, we predict the three columns of the rotation

matrix and then apply Gram-Schmidt orthonormalization to ensure

a proper rotation matrix.
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